Towards a Scalable Social Recommender Engine for
Online Marketplaces: The Case of Apache Solr

Emanuel Laci¢

Graz University of Technology

~ Graz, Austria
elacic@know-center.at

Denis Parra
Pontificia Universidad Catolica
Santiago, Chile
dparra@ing.puc.cl

Dominik Kowald
Know-Center
Graz, Austria

dkowald@know-center.at

Martin Kahr
BLANC-NOIR GmbH
Graz, Austria
martin.kahr@blanc-

Christoph Trattner
Know-Center
Graz, Austria
ctrattner@know-center.at

noir.at

ABSTRACT

Recent research has unveiled the importance of online social net-
works for improving the quality of recommenders in several do-
mains, what has encouraged the research community to investigate
ways to better exploit the social information for recommendations.
However, there is a lack of work that offers details of frameworks
that allow an easy integration of social data with traditional recom-
mendation algorithms in order to yield a straight-forward and scal-
able implementation of new and existing systems. Furthermore, it
is rare to find details of performance evaluations of recommender
systems such as hardware and software specifications or bench-
marking results of server loading tests.

In this paper we intend to bridge this gap by presenting the details
of a social recommender engine for online marketplaces built upon
the well-known search engine Apache Solr. We describe our archi-
tecture and also share implementation details to facilitate the re-use
of our approach by people implementing recommender systems. In
addition, we evaluate our framework from two perspectives: (a)
recommendation algorithms and data sources, and (b) system per-
formance under server stress tests. Using a dataset from the Sec-
ondLife virtual world that has both trading and social interactions,
we contribute to research in social recommenders by showing how
certain social features allow to improve recommendations in online
marketplaces. On the platform implementation side, our evaluation
results can serve as a baseline to people searching for performance
references in terms of scalability, model training and testing trade-
offs, real-time server performance and the impact of model updates
in a production system.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data min-
ing; H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval—Information filtering

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.

WWW'’14 Companion, April 7-11, 2014, Seoul, Korea.

ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579245 .

Keywords

social recommender engine; scalability; online marketplaces; Apache
Solr

1. INTRODUCTION

Recommender systems aim at helping users to find relevant in-
formation in an overloaded information space [11]. Although there
are well known methods (Content-based [1], Collaborative Filter-
ing [16, 18], Matrix Factorization [10]) and libraries to implement,
evaluate and extend recommenders (Apache Mahout', Graphlab?,
MyMediaLite®, among others [8]), the deployment of a real-time
recommender from scratch which considers a combination of al-
gorithms and data sources, the effect of large volumes of data and
hardware configuration, or the impact of model updates in the rec-
ommender performance remains unsolved or at least not publicly
available for the research community. In this paper, we contribute
to bridge this gap between research on recommender algorithms
and system deployment by presenting in detail our approach to im-
plement a social marketplace recommender. We describe our solu-
tion in terms of the data model that allows modularity and extensi-
bility, as well as the system architecture that relies on the Apache
Solr project to facilitate the scaling of our approach to big data.

We support our decision of using Solr on recent work that shows
the strong relation between memory-based recommendation ap-
proaches and ready-to-use text analytic techniques [3]. Since Solr
has already most of these techniques implemented, documented
and optimized by a well established open-source community, we
believe that it provides not only a good basis for a large-scale search
engine but it also provides a good foundation to implement an ef-
ficient and scalable social recommender engine for online market-
places. We appeal for Apache Solr since one might have to consider
several dimensions of the data or already existing indices based on
Apache Lucene, the kernel search engine Apache Solr is built upon.

To evaluate our implementation we consider diverse metrics —
accuracy and ranking metrics along diversity, and user coverage —
to unveil not only the performance of each recommender algorithm
isolated but also to show the importance of each single feature and
data source. In addition, a performance benchmarking experiment
was conducted to show the scalability of our approach.

"http://mahout.apache.org
Zhttp://graphlab.org
3http://www.mymedialite.net

Recommender Engine Solr Service

Centainer

Recommendation Algorithms

T]

Market Serv. [T—> Solr
Core-1

Social Serv. 4

Tune
features
Re\cﬂtlvg‘\mn;:wmi er Evaluator
Solr
Core-n
Social | | Marketplace
. Connector Connector

[} [y [}

| POST JuploadBulkData
1 via JSON Message

| POST juploadData
: via JSON Message

| GET frecommendations
: via JSON Message

¥ ¥ ¥

[Clients J

Figure 1: System architecture.

In detail, the paper is structured as follows: we begin by describ-
ing our system architecture and implementation details in Section
2. Section 3 describes the experimental setup we chose to evaluate
our framework, while in Section 4 we present the results in terms
of recommendation quality and also system’s performance. After
that, in Section 5, we discuss related work in the area and how it
differs from our approach. Finally, Section 6 concludes the paper
and provides an outlook to future work.

2. APPROACH

In the following sections we describe the architecture and high-
light some implementation details of our approach towards a scal-
able social recommender engine for online marketplaces. The en-
gine described below was implemented in Java as a joint effort with
the Austrian start-up company Blanc Noir* and was designed in a
modular way based on Apache Solr as an highly efficient data pro-
cessing and storing unit.

2.1 Implementation

The overall system architecture of our framework is illustrated
in Figure 1. It consists of the following four main components:

The Recommender Engine consists of the implemented recom-
mender algorithms (e.g., Most Popular, Content-based, Collabora-
tive Filtering, etc.) that can be attached to the Recommendation
Workflow component. The algorithms can be called separately, in
a specific sequence or combined (e.g., as a hybrid approach). This
design gives our framework not only the flexibility that new algo-
rithms can be easily implemented and instantiated (see Listing 1)
but also that new recommendation workflows can be defined based
on a given use case or domain.

Moreover, the Recommender Engine component contains an Eval-
uator that can can be used to test and tune the different algorithms
(and the combinations of those) based on various evaluation met-
rics (see Sections 3.2 and 4.1).

The Solr Service Container acts as an abstraction layer for the
Solr core functionalities to encapsulate the different queries and
methods (e.g., facets or MoreLikeThis) into data-driven services
(e.g., Marketplace or social services) that can be consumed by the
recommender engine. Furthermore, this modular abstraction al-

*http://blanc-noir.at/

lows the Solr backend to be replaced by another data store or search
strategy (e.g., ElasticSearch’) if needed.

The Solr Cores contain the indexed data used to generate rec-
ommendations. Each core is described by its own Solr schema that
specifies a data structure and that can be extended easily by simply
adding new data fields to it and calling Solr’s RELOAD function.
Currently, we store four types of data structures in the Solr cores:
(1) user profiles, (2) item profiles, (3) user actions (e.g., purchases)
and (4) social interactions (e.g., comments). New Solr cores can
be added if new data structures are needed in the data model. For
adding a new Solr core, a new data schema needs to be defined and
registered in the solr.xml configuration file, which can be automat-
ically done using Solr’s CREATE function.

Another major reason for using Solr is its support for horizon-
tal scaling. Since version 4.0, full automatic index distribution and
searching across multiple machines (either shards or replicas) is
supported. Under a scenario where the maximum capacity for han-
dling queries per second is reached, horizontal scaling with addi-
tional replicas can be performed. On the other hand, with sharding
on multiple machines, Solr supports the need to store large amounts
of data distributively.

The REST API is the interface to our framework that a client
can either use to request item recommendations, based on a specific
algorithm or workflow, or to update the data model (e.g., if a user
has purchased an item) via JSON messages. These JSON messages
are fully configurable and let the client, for example, define user-
specific data filters to, e.g., request only recommendations for a
given item category.

The data updates are handled by data connectors, where each
connector is responsible for a different type of data. Currently there
are two connectors in the system, one for social data (e.g., Face-
book, G+ and Twitter streams) and the other one for marketplace
data (e.g., purchases).

Listing 1: Example of how to implement and run a new recom-
mender strategy.

// Implement the recommender strategy
public interface RecommendStrategy {
public RecommendResponse recommend (RecommendQuery d,
Integer maxResults, SolrServer SolrServer);
}
// Run the new recommender strategy
RecommendStrategy strategyToUse = new MyStrategyImpl();

Filter filter = new ContentFilter(); // optional
RecommendationService.getRecommendations ("some_user",
"some_product", 10, filter, strategyToUse);

2.2 Recommender Algorithms

Currently, our framework implements four algorithms types to
recommend items (in our case products) to users. This set of al-
gorithms can easily be extended or adapted as explained in Section
2.1.

MostPopular (MP): This approach recommends for any user
the same set of items, which are weighted and ranked by purchase
frequency.

Collaborative Filtering (CF): Consists of recommending items
to a target user that have been previously favorited, consumed or
liked by similar users, the neighbors. This method is also known as
K-NN because it is usually accomplished in two steps: first, find the
K nearest neighbors based on some similarity metric, and second,
recommend items that the neighbors have liked that the target user
still has not consumed [20].

Shttp://www.elasticsearch.org/

In our case, we construct the neighborhood of a user based on
two types of features: marketplace features (purchases and cate-
gories), and social features (interests, groups and interactions) as
shown in Table 2. As an example: In the case of purchases (C'Fp),
we get all purchased items of the target user and query all users that
have also bought these items through the Solr data model in order to
recommend their purchased items to the target user. The resultant
lists of users and items are ranked and weighted using Solr’s facet
queries. The necessary queries for this process are the following:

// Find similar users based on purchased items using
Solr’s facet queries
/select?g=id: ("some_product_1")+0OR+1id: ("some_product_2") &
facet=true&facet.field=my_users_field
// Find items purchased by those similar users that are
new to the target user
/select?g=my_users_field: ("user_ 1""~5+OR+"user_2""3)&
fg:-id: ("some_product_1")+OR+-id: ("some_product_2")

Content-based Recommendations (C): Content-based recom-
mendation systems analyse item meta-data to identify other items
that could be of interest for a specific user. This can be done based
on user profile data or on the meta-data of the items that the user
has liked or purchased in the past [15]. Our implementation of
a content-based recommender is based on the second method and
uses the built-in MoreLikeThis functionality of Solr that finds sim-
ilar items for one or multiple given items by matching their con-
tent. We use two different types of meta-data features, namely
the title and the description of items (see Table 2). There are sev-
eral parameters for the MoreLikeThis function that can be set, e.g.,
the minimum document frequency (mindf), the minimum term fre-
quency (mintf), minimum word length (minwl), etc. In the cur-
rent implementation, both frequency parameters are set to 1 and the
word length to 4, which gives us a good trade-off between accuracy
and scalability. However, our implementation allows the applica-
tion developer also to set the parameters herself, if needed. New
content-based recommendation algorithms with different features
can be developed by implementing the aforementioned Recommend-
Strategy Interface. The listing below shows how a content-based
recommender can be called and customized in terms of the field
(mlt.fl) used to match items with similar content:

/select?g=1id: ("some_product_id") &mlt=trues&
mlt.fl=description

Hybrid Recommendations (CCF): All three mentioned recom-
mender algorithms have unique strengths and weaknesses, e.g., CF
suffers from sparse data and cold start problems, while content-
based approaches suffer from item meta-data to be utilized[4]. Hy-
brid recommenders combine different algorithms to tackle this is-
sue in order to produce more robust recommendations [5]. Consid-
ering that we want to favor items recommended by more than one
method, we chose to implement the hybrid approach called Cross-
Source Hybrid defined in [4]:

Wreci - Z (Wrec,i,.sj . WSj) . |Sreci| (l)
SjES

, where the combined weighting of the recommended item 3,
Wiec; ., 1s given by the sum of all single weightings for each recom-
mender source Wiec, s y multiplied by the weightings of the recom-
mender sources W ;. Furthermore, it uses the number of recom-
mender sources where ¢ appears | Sy, | to strongly favor items that
have been identified by more than one recommender. We use this
approach to combine the different features and algorithms shown in
Table 2 where each recommender source can be weighted accord-

Marketplace (Market)
Number of users 72,822
Number of purchases 265,274

Mean number of purchases per user 3.64
Number of products 122,360
Mean number of purchases per products 2.17

Online Social Network (Social)

Number of users 64, 500
Number of likes 1,492,028
Number of comments 347,755
Mean number of likes per user 14.91
Mean number of comments per user 3.47
Number of groups 260,137
Mean number of groups per user 8.91
Number of interests 88,371
Mean number of interests per user 1.57

Table 1: Basic statistics of the SL dataset.

ing to its impact on the given data (e.g., its Mean Average Precision
value as described in Section 3.2). This hybridization approach is
just one of the many approaches of how to combine different rec-
ommender strategies as described in the aforementioned work by
Burke [5]. Hence, implementing the RecommendStrategy in-
terface can lead to other approaches also in terms of the feature
selection process, if needed (e.g., [17]).

3. EXPERIMENTAL SETUP

In the following sections we describe in detail the dataset and the
evaluation method and metrics used for our evaluation.

3.1 Dataset

In order to evaluate our social recommender architecture, we
relied on two different sources of data to predict future product
purchases (see also [25]) — online Marketplace data and an online
social network data obtained from the virtual world SecondLife®
(SL). The reason for choosing SL over other real world sources is
the lack of freely available datasets that combine both social net-
work with marketplace data from the same set of users. The overall
statistics of whole dataset can be found in Table 1.

Similar to eBay, every seller in the SL marketplace’ owns her
own sub-page — called the seller’s store — where all items offered
are presented to the general public. As with other trading plat-
forms such as Amazon, sellers in the SL Marketplace have the
possibility to apply meta-data information such as price, title, or
description to their products. Customers in turn are able to pro-
vide reviews or ratings to products. In order to crawl all stores
and corresponding meta-data information as well as interactions
from the SL marketplace, we exploited the fact that every store
has a unique URI built from the URL pattern http://marketplace.
secondlife.com/stores/STORE_ID, where STORE_ID is an incre-
mental integer starting at 1. With this exploit at hand, we were
able to download 72,822 complete user profiles with correspond-
ing 265,274 purchases from the stores.

The online social network MySecondLife® was introduced by
Linden Labs, in July 2011. It can be compared to Facebook regard-
ing postings and check-ins but aims only at residents of the vir-
tual world. Hence, users can interact with each other by sharing
text messages, and commenting or liking (= loving) these mes-

®https://secondlife.com/
"https://marketplace.secondlife.com/
8https://my.secondlife.com/

Set Name Alg. Feature nDCG MRR MAP " D (e
_ | CCF, CF, CF purchases .0812(0305) .1310(.0492) .0628(.0236) .0442(.0166) .4404 (.1654) 37.56%
< CF. CF categories .0312 (.0145) .0202 (.0094) .0226 (.0105) .0146 (.0068) .4945 (.2298) 46.47%
§ C C title .0361 (.0168) .0250 (.0116) .0267 (.0124) .0155 (.0072) .6000 (.2789) 46.30%
Cq C description .0370 (.0172) .0260 (.0121) .0280 (.0130) .0153 (.0071) .5991 (.2785) 46.61%
CF; CF; CF interests .0018 (.0003) .0012 (.0002) .0012 (.0002) .0006 (.0001) .3814 (.0630) 16.52%
= CFy CF groups .0257 (.0129) .0205 (.0103) .0215(.0108) .0128 (.0064) .3816 (.1913) 50.13%
g CF, CF likes .0120 (.0010) 0084 (.0007) .0096 (.0008) .0084 (.0007) .3269 (.0273) 8.35%
Z CF., CF comments .0112(.0008) .0084 (.0006) .0096 (.0007) .0084 (.0006) .3147(.0225) 7.15%
CF;, CF interactions .1670 (.0192) .1174 (.0135) .1417 (.0163) .1626 (.0187) .3235(.0372) 11.50%

Table 2: Results of the performance experiment for each recommendation approach with corresponding features (normalized to the actual
UC in the row). Values in brackets represent the results normalized to 100% UC.

sages. A user pro- file can be accessed through a unique URL,
https://my.secondlife.com/en/USER_ID, where USER_ID depicts
the user’s name. The necessary names were extracted from the SL
Marketplace dataset. In order to gather the whole network we also
extracted all interaction partners recursively until no new user could
be found. All over, 1,839,783 interactions (likes, comments) were
downloaded for 64,500 user profiles.

3.2 Evaluation Method and Metrics

To evaluate the performance of our recommendation methods in
terms of accuracy, ranking, diversity and coverage, we performed a
number of off-line experiments. Therefore, we split the SL dataset
in two different sets (training and test set) using a method similar to
the described in [14], i.e. for each user we withheld 10 purchased
items (= products) from the training set and added them to the test
set to be predicted. Since we did not use a p-core pruning tech-
nique to prevent a biased evaluation as suggested in related work
[7], there are also users with less than 10 relevant items. For these
users, we considered half of their purchased items for training and
the other half for testing. With that method at hand we are able to
simulate cold-start users for whom there is no item in the training
set and the only relevant item is used in the test set.

For the evaluation metrics we used a diverse set of well-established
measures in recommender systems. In particular, we report Fi-
score (F1), Mean Reciprocal Rank (M RR), Mean Average Preci-
sion (M AP), Normalized Cumulative Discounted Gain (n DCG),
User Coverage (UC') [13], and Diversity (D) [21]. All performance
metrics are reported for 10 recommended items (k=10).

To assess the performance of our recommender framework in
terms of execution time and scalability we conducted two evalu-
ations. In the first one, we compared the runtime of train and test
datasets using different approaches and data sources. In the second,
we compared different stress tests within three different scenarios.
In scenario (i), we report the mean response time (in seconds) ac-
cording to an increasing number of requests, in scenario (ii), we
report the mean response time with 10% new randomly generated
data updates (i.e., purchases) during the recommendation process
and in (iii) we report the mean time needed to persist data on the
disc for a different number of updates. The experiments have been
executed on an IBM System x3550 server with two 2.0 GHz six-
core Intel Xeon E5-2620 processors, a 1TB ServeRAID M1115
SCSI Disk and 128 GB of RAM using one Apache Solr 4.3.1. in-
stance and Ubuntu 12.04.2.

4. RESULTS

In this section we present the results of our experiments in re-
spect to the recommender performance and the scalability of our
framework.

4.1 Algorithmic Performance

The evaluation of the performance of the recommender algo-
rithms and data sources has been conducted in two steps, first we
compared the different approaches and features on their own (see
Table 2) and then we compared the combinations of those (see Ta-
ble 4). The results for the different algorithms are calculated related
to their user coverage and so are based only on the users where
they were able to calculate recommendations as suggested in re-
lated work [9, 2]. Furthermore, also the values based on all users
in the datasets are shown in parenthesis.

Table 2 shows that the best results for the accuracy metrics (F1,
MRR, M AP and nDCG@G) are reached by C'F;,, followed by C'F},,
the CF approaches based on social interactions and purchases. How-
ever, the results also reveal that C'F;,, only provides a small user
coverage (UC) value, where C'F), performs much better and C'F,
(CF based on groups) performs best. The best diversity (D) val-
ues are reached by the two content-based approaches based on title
and description (C; and Cy4). Another thing that comes apparent
is, that all shown approaches clearly outperform CF; (CF based
on interests). Although the user’s interest seems conceptually a
good metric to assess user similarity, in the SL social network it
is defined by free-written keywords and phrases of the user, which
would require additional validation or processing steps in order to
exploit it as an efficient source of similarity.

This pattern of results also shows that the different algorithms
and features have their unique strengths and weaknesses and that
a hybrid combination of those should increase the overall recom-
mender quality in terms of accuracy, diversity and user coverage
[5]. Table 4 proofs this assumption and shows the combination of
the marketplace-based approaches (CCF,, = CF, + CF. + C; +
C4), the combination of the social based approaches (C'Fs = C'F; +
CFy+ CF; + CF., + CFjy,) and the combination of both together
with M P (All = CCF,, + CFs + CF5) to also address the issue
of cold-start users. It can be seen that our hybrid approach not only
outperforms the other approaches on all metrics but also provides a
UC of 100% and so it can provide recommendations for all users
in the datasets.

4.2 Framework Scalability

The recommender scalability has been evaluated in two ways,
first we compared the runtime of the different approaches and fea-
tures, as well as the hybrid combinations of those, and second we
compared the mean response time of the algorithms in form of a
stress test with an increasing number of requests in three scenarios.

The results of the runtime comparison are shown in Table 3. The
table reveals the mean test time (7est) that is needed to calculate
recommendations for a user and the overall time (IT'est + T'rainl)
that is needed to process all the users from the test set together
with the training time (711 seconds) for building the data model

Type CF. CF. C, Cy

CF, CF; CF, CF. CFyn|MP CCF, CFs All

Test 0.020 0.097 0.029 0.094 0.024 0.023 0.011 0.013 0.021 |0.016 0.194

0.024 0.197

|Test + Train| | 2,167 7,775 2,823 7,556 2,459 2386 1,513 1,658 2,240 | 1,876 14,838 2,459 15,057

Table 3: Results of the runtime experiment (in seconds) for each single recommendation approach and feature together with the hybrid

approaches and M P as a baseline.

in Solr (i.e., indexing the data). In general these results reveal that
Solr is capable of providing real-time recommendations for users as
the maximum mean test time is only 0.197 seconds for our hybrid
approach.

Figure 2 shows the results of the stress test with an increasing
number of requests in three scenarios, first without data updates
during the recommendation process, the second one is similar but
includes a 10% rate of data updates (i.e., randomly generated pur-
chases), and the third scenario shows the time needed to update
data. It can be seen in the first plot (without data updates) that the
mean response time follows a near linear progress for our combined
hybrid approach which clearly shows the scalability of Apache Solr
and our framework. Most surprisingly this is also the case in the
second plot that also takes data updates during the recommendation
time into account and so shows the capability of Solr in maintain-
ing its data index in near real-time. The third plot shows that Solr is
also designed to handle a high number of update requests as there is
amuch sharper increase in the mean update time for a small number
of update requests than for a high number.

This shows that our framework based on Solr already contains
algorithms that not only provide a good trade-off between recom-
mendation accuracy, diversity and user coverage, but also provide
and calculate recommendations in real-time and at scale. Further-
more, there are additional ways to optimize Apache Solr (e.g., soft
commits, using an SSD disk, ...) to even better tackle the perfor-
mance of committing new or existing data.

5. RELATED WORK

There are already multiple frameworks and approaches out there
that focus on scalable recommendation mechanisms. Most of these
approaches are based on Collaborative Filtering techniques to pre-
dict the user’s ratings for items, such as movies or products, based
on the user’s preferences in the past. However, the computational
complexity of these calculations is typically very high, especially
in the case of real-time streams.

To tackle this issue, previous work focused on distributed and
scalable data processing frameworks such as Apache Hadoop or
Mahout based on the map/reduce paradigm (e.g., [26] or [23]). In
contrast to our framework based on Apache Solr, these approaches
lack the mechanisms that enable near real-time updates of the data
model (data indexing) in case of new user interactions (e.g., a user
purchased an item) and updates of the data schema in case of new
data sources that have to be plugged in (e.g., data from HBase ta-
bles). Furthermore, it is not trivial to handle social- and content-
based data with these framework, whereas this functionality comes
directly out-of-the-box with Solr (e.g., with the MoreLikeThis func-
tion) together with powerful full text search functionalities. An
alternative method to improve Collaborative Filtering is based on
Matrix Factorization as for example proposed by Diaz-Aviles et
al. [6]. However, in this work the authors focus on the near real-
time processing of Twitter streams for topic recommendations and
not on item recommendations in social online marketplaces as it is
done with our framework.

Other approaches use database systems in order to "query" the
recommendations from a data model or to simply cache the already
calculated recommendations. One example for a database-driven

Measure M P CCF,, CFs All

nDCG .0078 .0678 (.0316) .0182 (.0103) .0387
MRR .0054 .0420 (.0196) .0126 (.0071) .0249
MAP .0054 .0485 (.0226) .0133 (.0075) .0278
R .0032 .0354 (.0165) .0115 (.0065) .0188
D 3801 4877 (2274) .3770 (2129) 4276
ucC 100% 46.63% 56.47% 100%

Table 4: Results of the performance experiment for the hybrid ap-
proaches together with M P as a baseline (normalized to the actual
UC'in the row). Values in brackets represent the results normalized
to 100% UC.

online recommender framework is the RecDB project by Sarwat et
al. [19] which is built on the basis of a PostgreSQL database with
an extended SQL statement set. The authors show that RecDB can
provide near real-time recommendations for movies, restaurants
and research papers. Although these approaches perform fairly
good, it has been shown that relational database management sys-
tems are insufficient for full text searches, that are the basis for
content-based recommendations, where information retrieval soft-
ware like Solr greatly speed up the response time of the requested
queries [24].

To date, there is only few research available that focus on the
usage of search engines and information retrieval systems to im-
plement recommendation services. In [22] a method is presented
to implement a k-nearest neighbor-based recommendation system
on top of full text search engines (MySQL and SphinxSearch) that
provides linear scalability relative to the data size. Another work in
this context is a recent contribution by Parra et al. [12] who imple-
mented a recommender system for scientific talks based on Apache
Solr. Although the latter mentioned contribution provides insights
on how to implement a near real-time recommender system based
on Apache Solr, they lack of extensive explanations and evaluations
of how such an approach performs in a big data scenario.

6. CONCLUSIONS

In this paper we have presented the implementation details and
evaluation of an online social marketplace recommender with a fo-
cus on two kind of readers: researchers and professionals in the
area of recommender systems. On the research side, we provided
results that highlight the importance of social features (interactions
in the form of likes and comments) in order to improve the accu-
racy, diversity and coverage of product recommendations. From the
side of professionals, we provided a description of our framework
based on Apache Solr with detailed results in terms of performance
and scalability in order to serve as a baseline for people interested
in implementing a recommender system, information rarely found
in current literature. Our framework evaluation considers dimen-
sions such as hardware configuration, model training and testing
trade-offs, real-time recommendation performance and the impact
of model updates over the whole system performance.

We plan different tasks to extend our current study. In terms
of algorithms, we would like to explore whether other hybridiza-
tion techniques (weighted, mixed, etc.) can provide us alternative
ways to combine methods and data sources, in order to produce

Recommendations

— W %W s
925 Mg-® corm _ ®o@ au| H
020 T 4

[SRR 1

:an Time (s)

0.00
10 100 1000 10000 100000

Requests

Recommendations with additional 10% updates

— P V¥ CFs
08f{e=® ccFm @@ ALl

Mean Time (s)

I
10 100 1000 10000 100000
Requests

Data updates

Mean Time (s)

o n & o @

H

1 L
100 1000 10000
Updates

Figure 2: Scalability tests (in seconds) for 10 to 100,000 recom-
mendation requests in three different scenarios.

an improvement in the quality of our recommendations. We also
look forward to test and integrate matrix factorization techniques
and study its impact in terms of recommendation quality and sys-
tem scalability. We also intend to run user studies to make sure
that improvements in accuracy, diversity and user coverage have a
significant positive impact on user engagement and satisfaction.

Regarding the platform, our current work proofed the feasibility
of only one well-known search engine backend to be easily utilized
and extended as a collaborative and content filtering recommender
engine. Therefore it is our aim to also investigate in depth other
popular backend search solutions such as ElasticSearch to compare
it with our current implementation based on Apache Solr. In this re-
spect, we are also interested in a comparative study that investigates
the performance of several collaborative and content filtering ap-
proaches grounded on SQL, Mahout or search engines (Solr, Elas-
ticSearch). Also, we are interested in utilizing other data sources,
in depth scalability experiments through sharding, and on testing
different feature selection methods for recommender systems.

Acknowledgments: The authors would like to thank Michael
Steurer and Lukas Eberhard for crawling the SL dataset and Alan
Said and Alejandro Bellogin for value comments on the paper. This
work is supported by the Know-Center. The first and the second
author of this paper are supported by grants from the EU funded
project Learning Layers (Nr. 318209).

7. REFERENCES

[1] M. Balabanovi¢ and Y. Shoham. Fab: content-based, collaborative
recommendation. Commun. ACM, 40(3):66-72, Mar. 1997.
[2] A. Bellogin and J. Parapar. Using graph partitioning techniques for
neighbour selection in user-based collaborative filtering. In
Proceedings of the sixth ACM conference on Recommender systems,
pages 213-216. ACM, 2012.
A. Bellogin, J. Wang, and P. Castells. Bridging memory-based
collaborative filtering and text retrieval. Information Retrieval,
16(6):697-724, 2013.
S. Bostandjiev, J. O’Donovan, and T. Hollerer. Tasteweights: a visual
interactive hybrid recommender system. In Proceedings of the sixth
ACM conference on Recommender systems, pages 35-42. ACM,
2012.
R. Burke. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4):331-370, 2002.
E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl.
Real-time top-n recommendation in social streams. In Proceedings of
the sixth ACM conference on Recommender systems, pages 59-66.
ACM, 2012.

3

—

[4

=

[5

—_

[6

—_

[7

—

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Doerfel and R. Jaschke. An analysis of tag-recommender
evaluation procedures. In Proceedings of the 7th ACM conference on
Recommender systems, pages 343-346. ACM, 2013.

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
Mymedialite: A free recommender system library. In Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys 11,
pages 305-308, New York, NY, USA, 2011. ACM.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems (TOIS), 22(1):5-53, 2004.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30-37, 20009.

S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not
enough: how accuracy metrics have hurt recommender systems. In
CHI ’06 Extended Abstracts on Human Factors in Computing
Systems, CHI EA 06, pages 1097-1101, New York, NY, USA, 2006.
ACM.

D. Parra, P. Brusilovsky, and C. Trattner. User controllability in an
hybrid talk recommender system. In Proceedings of the ACM 2014
International Conference on Intelligent User Interfaces, 1UI " 14,
pages 305-308, New York, NY, USA, 2014. ACM.

D. Parra and S. Sahebi. Recommender systems : Sources of
knowledge and evaluation metrics. In Advanced Techniques in Web
Intelligence-2: Web User Browsing Behaviour and Preference
Analysis, pages 149—175. Springer-Verlag, 2013.

D. Parra-Santander and P. Brusilovsky. Improving collaborative
filtering in social tagging systems for the recommendation of
scientific articles. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM International
Conference on, volume 1, pages 136-142. IEEE, 2010.

M. J. Pazzani and D. Billsus. Content-based recommendation
systems. In The adaptive web, pages 325-341. Springer, 2007.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
Grouplens: an open architecture for collaborative filtering of
netnews. In Proceedings of the 1994 ACM conference on Computer
supported cooperative work, pages 175-186. ACM, 1994.

R. Ronen, N. Koenigstein, E. Ziklik, and N. Nice. Selecting
content-based features for collaborative filtering recommenders. In
Proceedings of the 7th ACM conference on Recommender systems,
pages 407-410. ACM, 2013.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of
the 10th international conference on World Wide Web, pages
285-295. ACM, 2001.

M. Sarwat, J. Avery, and M. F. Mokbel. Recdb in action:
recommendation made easy in relational databases. Proceedings of
the VLDB Endowment, 6(12):1242-1245, 2013.

J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative
filtering recommender systems. In The adaptive web, pages 291-324.
Springer, 2007.

B. Smyth and P. McClave. Similarity vs. diversity. In D. Aha and

1. Watson, editors, Case-Based Reasoning Research and
Development, volume 2080 of Lecture Notes in Computer Science,
pages 347-361. Springer Berlin Heidelberg, 2001.

J. Suchal and P. Névrat. Full Text Search Engine as Scalable
k-Nearest Neighbor Recommendation System. In M. Bramer, editor,
Artificial Intelligence in Theory and Practice I1I, pages 165-173.
Springer Berlin Heidelberg, 2010.

S. G. Walunj and K. Sadafale. An online recommendation system for
e-commerce based on apache mahout framework. In Proceedings of
the 2013 annual conference on Computers and people research,
pages 153-158. ACM, 2013.

O. Yilmazel, B. Yurekli, B. Yilmazel, and A. Arslan. Relational
Databases versus Information Retrieval Systems : A Case Study.
IADIS International Conference Applied Computing 2009, pages
1-4, 2009.

Y. Zhang and M. Pennacchiotti. Predicting purchase behaviors from
social media. In Proceedings of the 22Nd International Conference
on World Wide Web, WWW ’13, pages 1521-1532, 2013.

Z.-D. Zhao and M.-s. Shang. User-based collaborative-filtering
recommendation algorithms on hadoop. In Knowledge Discovery and
Data Mining, 2010. WKDD’10. Third International Conference on,
pages 478-481. IEEE, 2010.

