

2 Visual Cultural Biases in Food Classification

- 3 Qing Zhang ^{1,*}, David Elsweiler ¹ and Christoph Trattner²
- ¹ Department of Language, Literature and Culture, University of Regensburg, Universitätsstrße 31, 93053
 S Regensburg; qing.zhang@ur (Q.Z.).de; david.elsweiler@ur.de (D.E.)
- ² Department of Information Science & Media Studies, University of Bergen, Fosswinckelsgt. 6, 5007 Bergen,
 Norway; christoph.trattner@uib.no (C.T.)
- 8 * Correspondence: qing.zhang@ur.de ; Tel.: +49-1573-593-1979 (Q.Z.)
- 9 Received: 06 May 2020; Accepted: date; Published: date

Abstract: This article investigates how visual biases influence the choices made by people and machines in the context of online food. To this end the paper investigates three research questions and shows (i) to what extent machines are able to classify images, (ii) how this compares to human performance on the same task and (iii) which factors are involved in the decision making of both, humans and machines. The research reveals that algorithms significantly outperform human labellers on this task with a range of biases being present in the decision-making process. The results are important as they have a range of implications on research, such as recommender technology

- 17 and crowdsourcing as is discussed in the article.
- 18 **Keywords:** Visual biases; Food classification; Crowdsourcing
- 19

1

Article

20 **1. Introduction**

21 Visual processing plays a significant role in human decision making [1] but can be biased in 22 several ways. For example, limited cognitive capacity means we are inclined to focus on the most 23 salient elements of stimuli and filter out other aspects [2]. This, in turn, means that the presentation 24 of visual cues can bias the decisions people make. Good examples of this are signs in supermarket 25 shelves that improve the salience of products and increase their sales as a result [3], or the placement 26 of items on a restaurant menu that make certain meals more likely to be chosen [4]. Visual biases of 27 this type transfer to digital environments. Chen and Pu, for instance, discovered that patterns of 28 visual attention change according to the layout of a recommender interface [5]. In our study, we focus 29 on cultural differences in visual biases related to food. The reasons for focusing on food are two-fold: 30 First, food is central to human health and quality of life and thus the problems most related to our 31 work, food identification and food recommendation, are both problems, which have received 32 significant research attention in recent years. Second, past research has shown that in food 33 identification tasks, algorithms can outperform human users [6]. The reasons why this is the case, 34 however, are not particularly well understood. We postulate that human biases, such as those 35 described above, may be playing a role. To our knowledge very little research has been performed in 36 this area as most work has focused on dataset biases and how these may be resolved e.g., [7,8]. There 37 has been some prior work, however, that has explored how known human visual biases, such as 38 canonical perspective (prefer to see objects from a certain perspective) [9] and Gestalt laws of 39 grouping (tendency to see objects in collections of parts) [10] to improve object classification [11]. Our 40 work is different because we examine how human biases harm classification accuracy and not 41 improve it, focusing on the classification of food images.

A second component of our work is to understand the cultural influence on how visual biases
impact human decisions. Again, limited literature exists on this aspect. Vondrick et al. [11] did show
the existence of cultural differences in visual biases. In their work they demonstrated that people

- 45 from different cultures had varying mental visual representations of objects, which could be
- harnessed to improve classification performance. Again, our work is different because we examinethis kind of bias in detail, focusing on the classification of foods sourced from different food cultures.
- this kind of bias in detail, focusing on the classification of foods sourced from different food cultures.
 It is well-known that food preferences vary geographically, both across [12] and within countries [13].
- 49 This also applies to visual preferences for food [14], with scholars arguing that if such cultural-related
- 50 context factors are ignored when developing recommendation systems, biased (and therefore poorer)
- 51 recommendations will be provided [14]. This makes the relationship between the origin of the food
- and the individual to whom it should be recommended an important one. It is within this context
- 53 that we study participants' perception of recipes.
- 54 In this article, we present a study whereby participants from three countries, China, the US, and 55 Germany, are asked to label images of food. The labels they apply are the country, from which they 56 believe the recipe was sourced. Studying a task with a known "true label", and collecting predictions 57 from both algorithms and human judges, we can achieve the following objectives:
- 58 Determine how able humans are to categorise recipes by origin.
- Understand the visual and other factors which influence (and bias) the labels they apply.
- Compare performance of humans and machine learning algorithms for this task.
- 61 62

In line with our objectives this work aims to answer three research questions:

- *RQ1.* To what extent is it possible to classify the recipes from the recipe portals of different food
 cultures with machine learning models based only on visual properties?
- *RQ2.* How able humans are to distinguish the recipes from the recipe portals of different food
 cultures by solely observing the recipe images?
- *RQ3.* Which factors (i.e., information cues from the images or user properties) influence the judgements made?

69 2. Materials and Methods

70 2.1. Data Collections

71 The recipes and associated images studied were sourced from three popular recipe portals from 72 China, Germany and the US. We collected 25,508 recipe images from Xiachufang.com, 35,501 from 73 Allrecipes.com and 72,899 images from Kochbar.de. Recipes from Xiachufang.com were crawled from the 74 website during the period from the 22nd to 26th October 2018, whereas the images and recipes for 75 Allrecipes.com and Kochbar.de were re-used from our past work [15]. These are amongst the most 76 popular recipe sharing websites in China, the US and Germany, respectively. In all cases we stored 77 only one image for each recipe, taking the initial, default associated image. To ensure equal classes 78 we randomly selected 25,000 images from each portal for our analyses.

79 2.2. Food Classification by means of Visual Features and Machine Learning

80 To establish the extent to which it is possible to use visual information to automatically 81 determine the portal from which a recipe was sourced, we formulated the problem as prediction task 82 whereby classifiers were trained to predict the source portal for each image. The images were 83 represented as a multi-dimensional vector by extracting 5,144 visual features from each image. The 84 idea was to generate as many features as possible that may capture elements of what participants 85 perceive and utilise when assigning labels. The features, described in detail below, include explicit 86 visual features (EVF), Colour Histogram, Local Binary Patterns (LBP), descriptors from Scale 87 Invariant Feature Transform (SIFT), as well as Deep Neural Network image embeddings (DNN).

- 88 2.2.1. Explicit Visual Features (EVF)
- The first set of features, which we refer to as Explicit Visual Features (EVF), were originally proposed by San Pedro and Siersdorfer [16]. The ten features in this set represent low-level image properties including image Brightness, Sharpness, Contrast, Colourfulness, Entropy, RGB contrast,
- 91 properties including image Brightness, Sharpness, Contrast, Colourfulness, Entropy, RGB contrast,
 92 Variation in Sharpness, Saturation, Variation in Saturation and Naturalness. These features are

simple to calculate and have shown utility in several image popularity predictions and
recommendation tasks, from the photos in Folksonomies [16] to specific categories of images, such as
recipe images [15] and artwork [17]. The freely available OpenIMAJ (<u>http://openimaj.org</u>) Framework
was employed to calculate the EVF features.

97 2.2.2. Colour Histogram

98 Colour can strongly influence human perception of food and alter their eating behaviours [18]. 99 Colour has even been shown to affect human judgements with respect to other sensory properties of 100 food, such as taste or flavour [19]. To capture the colour properties of an image, images can be 101 represented as colour histograms, which describe the global distribution of colour in the image. We 102 compute a multi-dimensional colour histogram in the RGB colour space, which simultaneously 103 represents three colour channels with eight bins for per colour channel. This results in an 8*8*8=512 104 dimensions vector for each image. This form of representation has shown utility in both image 105 classification (e.g., [20]), and retrieval tasks (e.g., [21]).

106 2.2.3. Local Binary Patterns (LBP)

107 LBP describes images in their entirety by computing the local representation of texture. 108 Proposed by Ojala et al. [22], LBP has been employed in several domains including facial recognition 109 [23], image retrieval [24], object detection and matching [25] owing to its ability to discriminate and 110 isolate changes. LBP ignores colour information. Before extracting, therefore, original images are 111 transformed into grey scale. Pixels from the image are then selected randomly and the grey value of 112 24 neighbours in a circle with the radius 8 pixels around these are compared. If the grey value of the 113 chosen pixel is greater than or equal to one of its neighbours, the neighbour point is set to 1. Otherwise, 114 the point gets a value 0. Subsequently, a group of binary strings are formed, the LBP value of the 115 chosen pixel is the decimal converted from it. The process is repeated until the LBP value has been 116 computed for every pixel. The final features describing the texture of the image are obtained by 117 counting the frequency of LBP values. Here, we employ uniform LBP, which is defined as the LBP 118 has only at most 2 transitions from 0 to 1 or vice versa, the others are deemed as one situation. Since

119 24 neighbours for each pixel are chosen, a vector of 24+2=26 dimensions is calculated.

120 2.2.4. Descriptors of Scale-Invariant Feature Transform (SIFT)

121 SIFT is a further robust local image representation [26]. The main idea of using SIFT is to identify 122 and describe the keypoints within images. Keypoints represent a sparse set of image regions that 123 contain complex image gradient structure. Following the approach described in [27] to identify these. 124 We apply to each keypoint a 128-dimension descriptor. Since each image has a different number of 125 keypoints, however, the dimensions of the visual features of each image are not of equal size. As such, 126 we apply k-means clustering (k=500) on all descriptors, and the centre of each cluster is deemed a 127 codeword and can be used to form a codebook. The final step is calculating the frequency histogram 128 of each codeword in the codebook for each image, those frequency histograms are the BoVW (Bag-129 of-Visual-Words), which are inspired by bag of words model in NLP [28]. In the end, each image is 130 represented by a 500-dimension vector.

131 2.2.5. Deep Neural Network Image Embeddings (DNN)

Deep learning has widely applied in diverse fields with promising results. In terms of image classification, several deep neural networks have been developed, such as AlexNet [29], GoogLeNet [30], ResNet [31], etc., which have proven to be powerful in a number of tasks, from medical applications, such as identifying cancerous cells [32] to urban planning [33]. In the food domain, such models have been used to improve accuracy in food categorization [34] and to estimate the nutritional content of a meal [35]. Inspired by these developments, we apply VGG-16, which is a deep neutral network pre-trained with ImageNet [36], which has shown impressive predictive power in food

- image retrieval [6]. We extracted the features of layer fc1 from VGG-16 by using the Keras
 (<u>http://keras.io</u>) framework, resulting in a 4,096-dimensional vector for each image.
- 141 After extracting the visual features, each image in our dataset is transformed to a 5,144-

142 dimensional vector and represented by the feature sets described above. We build classifiers by using 143 each feature set individually then all feature sets as a combination. Three supervised classification

approaches are applied: Naive Bayes (NB), Logistic Regression (LOG) and Random Forest (RF). In all

145 experiments the data are split randomly into training (70%) and testing (30%) sets, with a 5-fold cross-

validate Randomized Search CV being applied on the training set to select the optimal parameters

147 for logistic regression and random forests.

148 2.3. Food Classification by means of Human Judgement

To establish human performance on the same task we designed a remotely deployed experiment and recruited participants via crowd-sourcing platforms and social media. The experiment was hosted on a server owned by the University of Regensburg, Germany and in all cases accessed by means of an anonymised URL. By recruiting participants located in China, the United States and Germany, this allows us to study the influence of culturally induced biases.

154 2.3.1. Study Design

155 In the main part of the study participants are shown images sourced from different portals and 156 must answer 3 questions with respect to each image. On completing the study, participants provide 157 demographic and other background information. Participants are each shown 9 images, 3 from each 158 dataset, one after the other. All images are drawn randomly from the same test set used to evaluate 159 our classifiers (see above). To increase the generalisability of the findings, we maximised the number 160 of images used by assigning each image to only one participant. After showing an image, participants 161 are first asked to decide from which of the three recipe portals the associated recipe was sourced. The 162 study approach, the selection of the images, the questions asked, and their wording were tested in a 163 small scale-pilot study prior to performing these experiments.

Next, participants are asked to report, on a 5-point Likert scale, their confidence in the label they assigned. In a final question, participants can select one or more items from a list of factors, which we believed may have been influential in judgements. These included factors relating to food, e.g., recognisable ingredients, the type of food, the food colour, and shape, as well as non-food factors, such as the food container, eating utensils, or their gut instinct. The reasons for focusing on these factors are that they are commonly reported in the literature and reflect features in our classification approaches. More concretely:

Ingredients: The ingredients of meals are commonly used to build food classifiers, e.g.[37,38].

172 *Type:* As shown in[39], when food type is given, it is helpful for algorithms to predict food 173 ingredients. We put the factor Type here to see if food type has a positive influence for the human to 174 make the judgement.

Colour: Colour is also often used to classify food automatically[40] and in our case corresponds
to the visual feature Colour Histogram. Colour of food has also been proven to affect human
perception of food, sometimes leading to misrecognition[18,41].

178 *Shape:* This relates to the visual feature LBP. According to[42], humans rely on the shape to 179 classifying the objects while algorithms pay more attention to texture.

180 While the above listed factors all relate to the food itself, the remaining questions are associated 181 with supplementary factors, such as the *container*, *eating utensils* and *instinct*, which all were reported 182 by the participants as important during the pilot survey.

183

171

Participants can also list further factors in a free-text field. An example task and associatedquestions are shown in Figure 1.

187

Figure 1. Example of the online survey.

After labelling the images, participants complete the study by answering 13 questions, which
 capture participant demographic, as well as other information of interest. The following details were
 shown in Table 1:

191

1	02
1	93

Table 1. Survey questions for the participants.

Question	Scale
Personal Information	
Age	<18, 18-24, 25-34, 35-44, >55
Gender	Male, Female, Other
Nationality	Select from a drop-down list
Experiences with the recipe portals	
Familiarity with each recipe portal	Likert Scale 1 (Not at all) - 5 (Very familiar)
Use frequency of using recipe portals	Hardly use, At least once every three months, At least once per month, At least once per week, use on a daily basis
Settlement and travel experience	
Experience in China	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Experience in USA	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Experience in Germany	Never visited, I have been there once or a few times, I visit or have visited regularly, I have lived there for many months or longer, I am a permanent resident
Frequency of cross-continental travelling	Never, Less than once per year, 1-2 times per year, More than 2 times per year
Interests in food/recipe from foreign cultures	
Interest on food/recipe from other cultures	Likert Scale 1 (Not interest at all) - 5 (Very interested)
Frequency of trying food/recipe from other cultures	Hardly ever, Less than once per month, At least once per month, At least once per week, Most days
Free-text field	Blank space left for all participants

195 Participants. The study was originally deployed on Amazon Mechanical Turk (MTurk: 196 https://www.mturk.com/), a popular crowdsourcing platform, as a means to recruit participants 197 restricted to individuals from China, the US and Germany. To ensure participants performed reliably, 198 participation was restricted to only those who had a 'HIT accept rate' of more than 98% in their 199 previous tasks. Participants were paid 50 cents for their participation. This approach quickly 200 provided the sought-after 100 participants from the US, but after several weeks only 57 German 201 participants were recruited, and no Chinese participants were found. To recruit German participants, 202 we supplemented our sample by advertising via university mailing lists (our institution is located in 203 Germany) and social media via the authors' personal Twitter(https://www.twitter.com/) and 204 Facebook(<u>https://www.facebook.com/</u>) accounts. We additionally deployed a Chinese version of the 205 study (where instructions and questions were translated to Chinese) on the platform 206 Wenjuanxing(<u>https://www.wjx.cn/</u>) and advertised on Chinese social media channels 207 Douban(https://www.douban.com/), Xiaomuchong(http://www.xiaomuchong.com/bbs/) and 208 Wechat. Participants were reimbursed 1 Yuan for taking part. These approaches combined allowed 209 us to recruit 100 participants from each country. In the end, 300 participants from the three countries 210 were recruited. Figure 2 shows the distribution of the participants' age (Figure 2(a)) and gender 211 (Figure 2(b)) from each location. Participants who were located in Germany and China were younger 212 than those in the US and the distribution of gender in each country was also imbalanced. More males 213 took part in the US and Germany, while this trend is reversed in the Chinese sample.

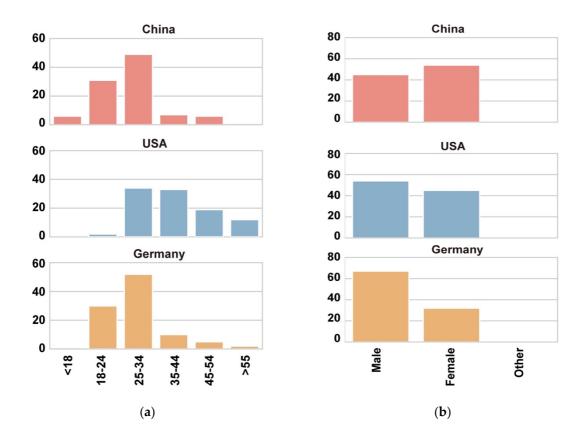


Figure 2. Study participants demographics. (a) Age distribution of participants from each country. (b) Gender distribution of participants from each country.

217 Methods of Data Analysis. After the collection phase was complete, the data were analysed in 218 different ways. Classification performance of both prediction models and the human judgements was 219 measured in terms of accuracy (ratio of successfully made classifications to total number of 220 classification decisions (ACC)). The performance of both prediction models and the human 221 judgements was visualised using confusion matrices. These are useful since they help illustrate in 222 which cases mistakes were made, as well as how these were made (i.e. which labels were erroneously 223 applied in which cases). Appropriate inferential statistics were used to establish differences across 224 groups (e.g., in terms of gender, interest in food/recipes from foreign cultures, etc.). Binary logistic 225 regression analyses were applied to determine if participants' answers related to demographic or 226 other factors and ordinal logistic regression models were built with the same factors, as well as 227 participants' reported confidence in their labels to understand which factors help predict confident 228 decisions. Binary logistic regression was used in cases where the dependent variable had two classes, 229 ordinal logistic regression was employed when the dependent variable was measured on an ordinal 230 scale. We created numerous different models using groups of feature sets as shown in the tables in 231 appropriate sections below.

Participant responses to free-text questions were analysed qualitatively using a bottom-up, inductive approach. Responses were coded and duplicate, similar or related responses were grouped together, and the groups collapsed until a hierarchical structure was formed. We communicate the results in the form of a coding scheme and provide examples to illustrate the most important codes.

236 **3. Results**

The results of our experiments will be reported in the following subsections to answer the threequestions we raised in Section 1.

239 3.1. Classifying the origin of recipes based on visual properties with machine learning approaches (RQ1)

240 Table 2 presents the performance of each classifier. The bottom line of the table illustrates that 241 the recipe images from the three recipe portals are sufficiently visually distinct, such that they can be 242 classified by the algorithms with relatively high accuracy. When using all of the visual features 243 available, all 3 classifiers offered accuracy (ACC) of ACC = 0.73 or better with the logistic regression 244 model achieving the highest accuracy of ACC = 0.89. The DNN features offer the best predictive 245 power while SIFT ranked at the second place. Single EVF features offer the lowest accuracy, but, 246 nevertheless, all perform slightly better than random (ACC = 0.33). Models utilising all EVF features 247 offer improved accuracy (ACC = 0.47 - 0.55). The performance of the remaining feature sets like 248 Colour Histogram and LBP shows no significant difference when combined EVF.

249**Table 2.** Prediction accuracy for recipe source different visually related feature sets. Best performing250scores for each classifier are bolded. NB=Naive Bayes; LOG=Logistic Regression; RF=Random Forest.

Features	Accuracy			
	NB	LOG	RF	
EVF(Brightness)	0.41	0.41	0.42	
EVF(Sharpness)	0.41	0.41	0.43	
EVF(Contrast)	0.37	0.37	0.42	
EVF(Colourfulness)	0.38	0.38	0.41	
EVF(Entropy)	0.38	0.37	0.40	
EVF(RGBContrast)	0.38	0.38	0.41	
EVF(Sharpness Variation)	0.41	0.41	0.41	
EVF(Saturation)	0.39	0.39	0.40	
EVF(Saturation Variation)	0.39	0.38	0.41	
EVF(Naturalness)	0.38	0.38	0.40	
EVF(All features)	0.47	0.54	0.55	
Colour Histogram	0.43	0.52	0.54	
LBP	0.48	0.52	0.52	
SIFT	0.58	0.72	0.67	
DNN	0.67	0.86	0.78	
ALL Features	0.73	0.89	0.85	

251

Figure 3 shows the confusion matrix for the best performing model, illustrating that the classifier was more accurate when identifying recipes from *Xiachufang* (ACC = 0.95) than classifying that from the other two (ACC = 0.86 and 0.85). The majority of miss-classifications for *Allrecipes* and *Kochbar* were labelled as belonging to the other of these two classes, with very few being miss-classified as *Xiachufang* recipes. In other words, when applying the same algorithms and visual features to images, the recipes from the Chinese recipe portals seem easier to differentiate.

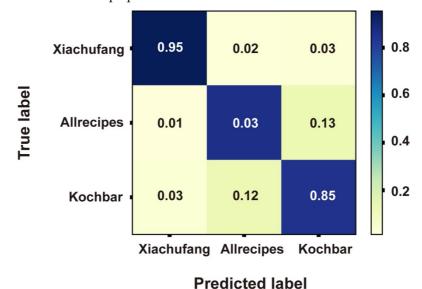
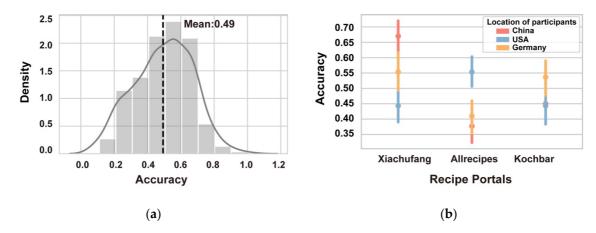


Figure 3. Confusion matrix of the best performing classifier on the samples.

In summary, the experiments show that it is possible to distinguish between the recipes from different recipe portals of China, US, and Germany based solely on the proposed visual features. *Xiachufang* recipe images appear to be more visually distinct with images from the other two portals more likely to be confused.

264 3.2. Analysing human labelling performance (RQ2)

265 As shown in Figures 4 human performance on the same food classification task was markedly 266 poorer. Figure 4(a) presents the accuracy distribution over all 300 participants, with most achieving 267 an accuracy of between ACC = 0.40 and 0.60; M = 0.49. Figure 4(b) depicts how accuracy varied for 268 participants from the three countries across the different food portals. Performance for the Chinese 269 and American participants was highest when they were tasked with classifying recipe images from 270 their own country. Participants from China were particularly accurate with Xiachufang recipe images, 271 with the accuracy ACC = 0.67. Participants from Germany, on the other hand, achieved a slightly 272 higher accuracy when classifying recipes from *Xiachufang* than images from *Kochbar*, the ACC = 0.55273 and 0.54 respectively. For Chinese and German participants, recipes from Allrecipes were the most 274 difficult to classify.



275

Figure 4. Human performance on food origin classification task. (a) Distribution and mean value of participant
 accuracy. (b) Mean value and error bar for participants accuracy for each recipe portal, grouped by participant
 origin.

279 When comparing the performance of our human participants to those achieved by the 280 algorithms above (i.e., by examining the confusion matrices in Figures 3 and 5), we see that humans 281 make choices biased in the same direction as those generated algorithmically. Figure 5, which 282 provides the confusion matrix of their judgements indicates that participants made more mistakes 283 when classifying recipes from Allrecipes and Kochbar. More than 30% of recipes from Allrecipes are 284 identified as from Kochbar, while 10% fewer are mistaken for recipes from Xiachufang. Participants 285 behaved similarly when classifying the recipes from Kochbar. At the same time, more than half of the 286 recipes from Xiachufang are classified correctly. The human judgements, therefore, follow the same 287 trend as those provided by the algorithms: The images from *Xiachufang* seem to be most visually 288 distinct, whereas those from Allrecipes and Kochbar seem to most similar.

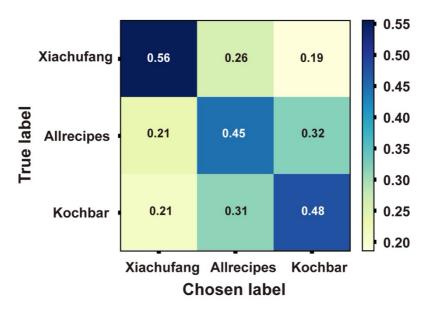


Figure 5. Confusion matrix of participants' judgements.

291 Participants from different locations display diverse degrees of confidence in each recipe portal, 292 as shown in Figure 6(a). In general, participants report higher confidence when labelling recipes 293 sourced from the country where they reside. This is particularly true for the participants from USA 294 and Germany. Moreover, both the German and US participants report least confidence when 295 labelling images from Xiachufang. The findings may shed light on cultural differences with respect to 296 confidence, with the Chinese exhibiting caution rather than confidence and the participants from the 297 United States exhibiting high confidence in their judgements other than for images from the Chinese 298 site.

299 Figure 6(b) presents the correlation matrix for the confidence scores participants applied to their 300 labels for images sourced from different recipe portals. It demonstrates that' participants' confidence 301 in their labels for *Allrecipes* and *Kochbar* images correlate positively (p < 0.05), while a negative 302 correlation exists between the confidence in labels for both western portals and those for *Xiachufang* 303 images. This finding aligns with those described above. It seems that when participants assumed a 304 recipe originated from Xiachufang, then they believed that it is unlikely to come from the other two 305 recipe portals and vice versa. In other words, participants believe recipes images on the western 306 portals to look similar, but different to those from Xiachufang.

To summarise, in this section we have learned that participant performance in the labelling task was significantly poorer than the machine learning approaches in the previous section. The analyses, moreover, reveal differences in the labels applied and the performance of participants from different countries for images sourced from different portals. Participants typically perform best and are more confident when labelling images sourced from their home country.

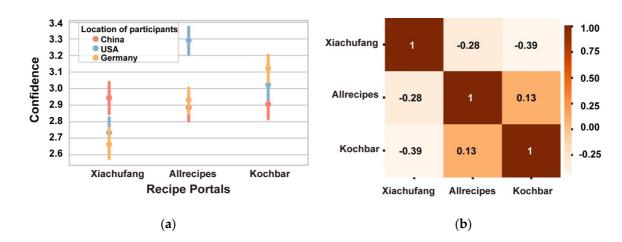


Figure 6. Participant confidence in labels across recipe portals. (a) Mean value and error bar for confidence ratings for each collection by participants from different locations. (b) Correlation matrix for participant

317 confidence scores for their labels for different recipe portals.

318 3.3. Factors leading to or influencing participants' judgements (RQ3)

In this section we explore the labelling decisions made by participants in detail. We do this by first looking at the visual features, which proved useful when predicting the source of an image, to determine if the same information can help predict the labels applied by participants. Next, we examine the explanations participants gave for their choices to understand how choices were made and / or biased, as well as to determine which, if any, helped lead to a correct label being applied. Lastly, we examine how labelling performance varies across different groups, which provides an insight into how demographic variables can influence the way images of food are perceived.

326 3.3.1. Predicting participant label based on visual features

327 Table 3 presents the utility of various visual components with respect to a) predicting a recipe's 328 origin and b) predicting the label applied to the image by participants in the experiment. The first 329 thing we notice when examining Table 3 is that visual information features tell us more about the 330 actual source of a recipe image than the label applied to it by the participant. The highest accuracy 331 for image source achieved was ACC = 0.84 with a combined feature set, which is slightly lower than 332 with the full test set (see Section 3.1) achieved when attempting to predict participant judgements. 333 The best performance achieved an accuracy of ACC = 0.46, again using all of the visual features 334 available. This is an initial indication that participants were not using the same visual properties as 335 the algorithms to make their decisions.

336

338

339 340

Table 3. Results when predicting recipe image source and participant applied label based on different visual properties and other factors. Best performing scores for each classifier are bolded. NB=Naive Bayes; LOG=Logistic Regression; RF=Random Forest.

	_		Α	ccuracy		
		NB		LOG		RF
	Recipe's	Participants'	Recipe's	Participants'	Recipe's	Participants'
_	Origin	Judgements	Origin	Judgements	Origin	Judgements
EVF(Brightness)	0.43	0.36	0.41	0.33	0.41	0.34
EVF(Sharpness)	0.41	0.36	0.43	0.37	0.44	0.36
EVF(Contrast)	0.37	0.34	0.37	0.34	0.35	0.34
EVF(Colourfulness)	0.41	0.34	0.40	0.34	0.40	0.34
EVF(Entropy)	0.38	0.36	0.38	0.36	0.39	0.36
EVF(RGBContrast)	0.37	0.34	0.38	0.35	0.37	0.35
EVF(Sharpness Variation)	0.42	0.36	0.43	0.36	0.42	0.37
EVF(Saturation)	0.42	0.32	0.42	0.34	0.41	0.34
EVF(Saturation Variation)	0.39	0.36	0.39	0.34	0.39	0.37
EVF(Naturalness)	0.39	0.36	0.40	0.36	0.40	0.34
EVF(All features)	0.50	0.38	0.56	0.38	0.55	0.38
Colour Histogram	0.37	0.34	0.49	0.36	0.54	0.38
LBP	0.47	0.38	0.50	0.38	0.51	0.39
SIFT	0.57	0.40	0.52	0.39	0.65	0.44
DNN	0.66	0.43	0.82	0.42	0.77	0.45
All Features(Visually)	0.69	0.43	0.85	0.43	0.84	0.46
Ingredients	0.34	0.35	0.34	0.35	0.34	0.35
Туре	0.34	0.35	0.34	0.35	0.34	0.35
Colour	0.35	0.34	0.35	0.34	0.35	0.34
Shape	0.33	0.33	0.32	0.33	0.32	0.33
Container	0.34	0.36	0.34	0.36	0.34	0.36
Eating utensils	0.35	0.36	0.35	0.36	0.35	0.36
Instinct	0.35	0.36	0.35	0.36	0.35	0.36
All Factors	0.34	0.38	0.35	0.37	0.35	0.36

341 3.3.2. Participant explanations for labelling choices

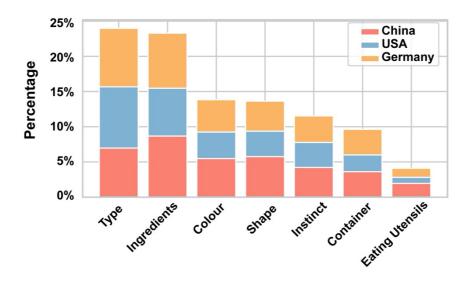
342 The lower part of Table 3 demonstrates how classifiers performed using the predefined explanations 343 we provided to participants to justify their performance as features. As can be read from the table, 344 none of these features were helpful, either for predicting origin or the labels participants assigned. 345 Most likely this was because the explanations did not advocate for a specific class, e.g., some utensils 346 (for example, chopsticks) may have indicated Chinese food, whereas others may have been a sign of 347 a western dish.

348 Table 4 shows the frequency with which the most common factors and combination of factors 349 were selected by participants to justify the labels they applied. The ingredients featured in the image, 350 type of food and the combination of these two features were the most commonly reported as 351 influencing decisions. These findings underline that although participants were only presented with 352 visual information in the form of an image, the labelling choice was made based on semantic 353 interpretation of the image content. Moreover, in 127 cases participants reported making decisions 354 based on "Instinct", that is a feeling that the recipe was sourced from a particular recipe platform. 355 Colour and shape - the two obvious visual properties listed - seem to have been supplementary 356 factors since, as shown in Table 4 and Figure 7, they were more likely to be chosen with other factors 357 rather than being chosen alone. Factors, such as container and eating utensil were selected least 358 frequently, although it is important to note that not every image contained a container or utensil.

361 Table 4. Top-10 factor or combination of factors indicated by participants to have influenced the label362 applied.

Factors	Count	Percentage
Ingredients, Type	226	84%
Туре	226	84%
Ingredients	164	61%
Instinct	127	47%
Ingredients, Colour, Type	94	35%
Shape, Type	76	28%
Ingredients, Shape, Type	76	28%
Ingredients, Type, Instinct	75	28%
Ingredients, Colour	62	23%
Type, Instinct	62	23%

363



364

365

Figure 7. The percentage based on frequency of each single factor chosen by the participants.

366 3.3.3. Free-text Explanations

Participants were also able to provide additional descriptions to justify their decisions in their own words using free-text comments. 14 participants from China, 33 from the US and 22 from Germany provided 166 such explanations, which were analysed qualitatively in a bottom-up fashion as described above. Duplicate, similar or related responses were grouped together, and the groups collapsed until a hierarchical structure was formed. The coding scheme for the factor is shown in Table 5.

Two high-level categories were discovered: Food-based and non-food-based. Non-food factors
 include watermarks, commonly used date format for specific countries, or objects or background
 aspects surrounding the pictured meals, which helped the participants make judgements.

Both food and non-food factors featured aesthetic dimensions, which may be related to the visual aspects represented in the machine learning features. Comments categorised with Adjective, Style or Photo were somehow related to visual aspects. Several participants described the recipe images aesthetically and treated photography as the basis for judgements e.g., "Angle of the photo, light in the photo" (US_72). On the other hand, other justifications required abstraction or reflection of the images to derive semantic properties, including what ingredients a meal contains, how it is cooked, how it may taste, whether or not it is healthy etc. Some participants even reported how their Foods 2020, 9, x FOR PEER REVIEW

- 383 personal experiences with this kind of food influenced the label they assigned. All of these factors
- 384 underline how the participants knowledge and background influenced or biased the label they

385 applied.

386

Table 5. Coding scheme for factors reported by participants.

Categories		\mathbb{N}^1	Description	Examples ²
	Adjective	Participants left single 24 adjective to describe the food in the recipe image		GE_96 ³ : good US_98: healthy
Food	Style	26	Participants reported how the food looks like in the recipe image	CH_30: Chinese dish is generally not so ugly US_85: Plate design
Factors	Ingredients	17	Participants reported at least one ingredient they have seen from the recipe	CH_10: There is rice US_95: The egg on top looks like oriental food.
Cooking Methods		5	Participants reported how to cook the food in the recipe image	CH_13: Production methods, it's barbecue
	Text	49	Participants reported the letters, characters or water markers, etc. they have seen	CH_42: "猪肉" is Chinese character US_77: German writing GE_64: Date format: 19.02.2013 is
	Object/ Background	16	Participants described the objects or setting on the recipe image instead of the	CH_30: Stairs US_55: Newspaper GE_31: Kitchen utensils
Non-food factors	Photo	9	Participants described the photographic and post- processing of the recipe	CH_51: A popular filter was used US_72: Angle of the photo, light in the photo
	Personal experience	2	Participants reported their own experience with the food in the recipe image	US_5: I know this type of food CH_41: It seems like I've eaten this
	Unknown	18	Participants left comments but offer deficient information	CH_41: It could come from any portal US_3: not sure what type of food that is GE_96: nothing

387 Note: 1.Column N indicates how many times this kind of factors were reported by the participants; 2.Column Examples 388 indicated the id of participants and the comments they left; 3. Participant's id comprised by their location (CH:China, US:the 389 US, GE: Germany) and a number.

390 The free-text comment box was occasionally used by participants to explain their uncertainty. 391 We assigned these cases most often to the category "Text". We examined the images in these cases 392 manually and discovered that they all originated either from Xiachufang (see Figure 8a) or Kochbar 393 (see Figure 8b). Most of the texts were added with post-processing, as shown in Figure 8(a), the 394 uploaders tagged the recipes with the dish names or their usernames. While the brands on the food 395 packages reveal the information related to recipes' origins, like the images on the left of Figure 8(b), 396 those brands are common in German supermarket but rare in the other two countries. Texts offer 397 concrete information for humans, and as such the accuracy of participants in such cases increased to 398 ACC = 0.94.

402

401

(a)

(b)

403

. . .

404

Figure 8. Examples of images with text. (a) images with Chinese characters from *Xiachufang.com*. (b)
images with German Characters from *Kochbar.de*.

407 3.3.4. Factors leading to correct classification choices

To determine which factors aided participants classify recipes correctly, we developed further logistic regression models. To do so, cases where labels were assigned correctly were given a value of 1 and cases where an incorrect label was given, 0. This value was then used as the dependent variable in the analysis. The predictors (independent variables) were the predefined explanatory

412 factors described above. The results are shown in Table 6.

4	1	3
		\sim

Table 6. Logistic regression model of participants' judgements.

	Dependent variable Correct/Wrong Answer				
	coef(β)	95% CI	OR		
Constant	-0.192	[-0.364,-0.020]	0.825		
Ingredients	0.069	[-0.085,0.223]	1.071		
Туре	0.184*	[0.031,0.338]	1.202*		
Colour	0.031	[-0.134,0.196]	1.031		
Shape	-0.063	[-0.229,0.102]	0.939		
Container	0.013	[-0.170,0.196]	1.013		
Eating Utensils	0.394**	[0.132,0.657]	1.483**		
Instinct	0.008	[-0.163,0.178]	1.008		
McFadden R ²		0.004			
Log Likelihood		-1863.5			
AIC		3743			

414

Note: *p< 0.05, **p< 0.01, ***p< 0.001.

415 Only food type and eating utensils prove to have a significant (p < .05) influence on participants' 416 ability to label images correctly. We must acknowledge, however, the fit of the model is not 417 particularly strong, as indicated by the low R² value. That being said, when participants reported 418 noticing eating utensils, prediction accuracy increases from ACC = 0.48 to ACC = 0.57. The increase 419 is especially pronounced for recipes from Xiahucfang where accuracy increases from ACC = 0.53 to 420 ACC = 0.75. To exemplify why performance increases in such cases, recipes with eating utensils 421 originating from Xiachufang are shown in Figure 9. These were all classified correctly by our 422 participants; the traditional Chinese eating utensil chopsticks are obvious in the images, which 423 increases the probability of participants labelling correctly.

Figure 9. Examples of images with eating utensils from Xiachufang.com.

In a next step, we investigate whether the same factors had an influence on participants'
confidence that they were labelling images correctly. For this, ordinal regression models are used,
one model per collection, the results of which are shown in Table 7.

429	Table 7. Ordinal regression models predicting participant confidence for images associated with each
430	recipe portal.

	Dependent variable									
	Confic	lence on Xia	chufang	Confi	Confidence on Allrecipes			Confidence on Kochbar		
	Coef(β)	95%CI	OR	Coef(β)	95%CI	OR	Coef(β)	95%CI	OR	
Ingredients	0.009	[-0.126, 0.14	5] 1.009	-0.098	[-0.233, 0.038]	0.907	-0.220**	[-0.356, -0.839]	0.803**	
Туре	-0.294***	[-0.430, -0.1	58] ^{0.745***}	-0.030	[-0.167, 0.105]	0.970	-0.031	[-0.167, 0.104]	0.970	
Colour	0.156*	[0.009, 0.30	2] 1.168*	-0.147*	[-0.294, -0.000]	0.863*	-0.102	[-0.249, 0.044]	0.903	
Shape	0.010	[-0.137, 0.15	6] 1.010	-0.145	[-0.292, 0.001]	0.865	-0.004	[-0.151, 0.142]	0.996	
Container	0.241**	[0.078, 0.40	5] 1.273**	-0.011	[-0.172, 0.151]	0.990	-0.143	[-0.306, 0.020]	0.867	
Eating Utensils	0.365**	[0.123, 0.60	8] 1.440**	-0.258*	[-0.489, -0.027]	0.772*	-0.177	[-0.413, 0.060]	0.838	
Instinct	-0.208**	[-0.360, -0.0	57] 0.812**	-0.198*	[-0.349, -0.047]	0.820*	-0.093	[-0.245, 0.060]	0.912	
MacFadden's R ²	den's R ² 0.006			0.003		0.002				
Log Likelihood	-4256.70		-4248.05		-4233.68					
AIC		8535.41			8518.09			8489.36		

431

The first thing to observe is that different features are found to be helpful for different collections.
Type, Container, Eating Utensils and Instinct were useful predictors for confidence when *Xiachufang*were to be judged; for *Allrecipes*, Colour, Eating Utensils and Instinct were significant features; and,
for *Kochbar* only the presence of Ingredients was found to be a significant feature.

436 The only features with positive coefficients, i.e., features that when present increase participant 437 confidence, were found in the model for Xiachufang. When a participant reported the presence of a 438 Container or Eating Utensil on average this increased their confidence in the label applied. The 439 remaining significant features were indicators, which reduced confidence. In other words, 440 acknowledging the presence of certain ingredients in a recipe from Kochbar tended to lower 441 confidence in the assigned label on average. We also note that while the presence of Eating Utensils 442 increased confidence for Xiachufang recipes, the trend was the opposite for images from both other 443 collections. Moreover, when participants reported making a decision based on Instinct in all three 444 collections this resulted in lower confidence ratings on average, which makes sense.

Note: * p< 0.05; ** p< 0.01; *** p< 0.001.

To understand if participant demographic information influences their ability to determine the portal from which a recipe originates, we examine how the accuracy of participants' judgements varied on each recipe portal depending on how they answered the post-experiment questionnaire. Table 8 presents the results, revealing that participants with different ages and genders behaved differently when judging recipes' origins. Younger participants (< 35) achieved higher accuracy when labelling recipes from Xichufang (ACC = 0.59 vs ACC = 0.49) but they performed significantly worse than elder participants on labelling *Allrecipes* (ACC = 0.41 vs ACC = 0.52).

454 Table 8. Comparison of classification accuracy achieved by different groups based on demographic
 455 information. Only attributes with significant results are included in the table. Statistical significance
 456 across groups was determined using Mann-Whitney U tests.

	Overall Accuracy Mean(+/- std)	Accuracy on <i>Xiachufang</i> Mean(+/- std)	Accuracy on <i>Allrecipes</i> Mean(+/- std)	Accuracy on <i>Kochbar</i> Mean(+/- std)
Gender				
Male	0.49(+/-0.17)	0.51(+/-0.29)	0.44(+/-0.28)	0.51(+/-0.30)*
Female	0.50(+/-0.18)	0.61(+/-0.28)**	0.46(+/-0.28)	0.44(+/-0.31)
Age				
Age < 35	0.50(+/-0.18)	0.59(+/-0.29)**	0.41(+/-0.27)	0.50(+/-0.30)*
$Age \ge 35$	0.48(+/-0.17)	0.49(+/-0.29)	0.52(+/-0.27)***	0.50(+/-0.30)
Experience of each Country (Ch	ina)			
Never visited - been there a few times	0.49(+/-0.17)	0.51(+/-0.29)	0.47(+/-0.27)*	0.49(+/-0.29)
Visit regularly - permanent resident	0.50(+/-0.18)	0.63(+/-0.28)***	0.41(+/-0.29)	0.45(+/-0.31)
Experience of each Country (The	e US)			
Never visited - been there a few times	0.49(+/-0.18)	0.61(+/-0.29)***	0.39(+/-0.28)	0.49(+/-0.31)
Visit regularly - permanent resident	0.48(+/-0.17)	0.47(+/-0.27)	0.53(+/-0.26)***	0.46(+/-0.30)
Experience of each Country (Ge	rmany)			
Never visited - been there a few times	0.48(+/-0.18)	0.56(+/-0.27)	0.46(+/-0.28)	0.43(+/-0.31)
Visit regularly - permanent resident	0.50(+/-0.17)	0.55(+/-0.31)	0.43(+/-0.28)	0.54(+/-0.29)***
Familiarity with each recipe por	tal (Xiachufang.c	om)		
Not familiar (≥ 2 on Likert scale)		0.55(+/-0.29)	0.46(+/-0.28)	0.52(+/-0.29)***
Familiar (\leq 3 on the Likert scale)	0.46(+/-0.17)	0.57(+/-0.31)	0.42(+/-0.28)	0.39(+/-0.31)
Familiarity with each recipe por	tal (Allrecipes.co	m)		
Not familiar (≥ 2 on Likert scale)	0.50(+/-0.17)	0.62(+/-0.28)***	0.40(+/-0.28)	0.50(+/-0.29)
Familiar (≤ 3 on the Likert scale)	0.48(+/-0.17)	0.48(+/-0.28)	0.50(+/-0.27)***	0.46(+/-0.31)
Familiarity with each recipe por				
Not familiar (≥ 2 on Likert scale)	0.50(+/-0.17)	0.58(+/-0.28)*	0.44(+/-00.28)	0.48(+/-0.30)
Familiar (≤ 3 on the Likert scale)	0.48(+/-0.18)	0.50(+/-0.32)	0.46(+/-0.28)	0.48(+/-0.31)
Interests in food from foreign cu	ultures			
Not interested (≥ 2 on Likert scale)	0.41(+/-0.23)	0.46(+/-0.28)	0.33(+/-0.33)	0.45(+/-0.39)
Interested (≤ 3 on the Likert scale)	0.50(+/-0.17)*	0.56(+/-0.29)*	0.46(+/-0.27)*	0.48(+/-0.30)
Interests in recipes from foreign	cultures			
Not interested (≥ 2 on Likert				
scale)	0.45(+/-0.23)	0.50(+/-0.27)	0.37(+/-0.33)	0.47(+/-0.34)
Interested (≤ 3 on the Likert scale)	0.50(+/-0.17)*	0.56(+/-0.29)	0.46(+/-0.27)*	0.48(+/-0.30)

Frequency of trying recipes from other cultures

Once per month	0.48(+/-0.18)	0.58(+/-0.29)*	0.41(+/-0.28)	0.46(+/-0.29)
Once per month	0.50(+/-0.17)	0.52(+/-0.29)	0.49(+/-0.27)**	0.50(+/-0.32)**
			21	

457

Note: * p< 0.05; ** p< 0.01; *** p< 0.001.

Female participants achieved higher accuracy on *Xiachufang* (ACC = 0.61 vs ACC = 0.51) while they underperformed compared to male participants on *Kochbar* (ACC = 0.44 vs ACC = 0.51). We must interpret the findings regarding age cautiously, though. As the sample age distribution in our samples varies across countries, it is very possible that the effects found relating to age are simply a consequence of participants being best able to identify foods sourced from the portal in their home country.

464 An additional question invited the participants to share their travel experiences and experiences 465 of each country. This allows us to understand whether the classification decisions participants made 466 varied according to their experience of being in the other countries. Analysing the data reveals that 467 accuracy did not increase as a result of frequent cross-continental travel. People who had lived in a 468 country for longer were, however, significantly better able to classify the recipes from the portal of 469 this country. Other observations include that participants who had spent time in China were more 470 accurate when labelling recipes from Allrecipes, whereas those with more experience of the US were 471 less accurate when labelling Xiachufang images. Less surprisingly, being familiar with the recipe 472 portal influenced the accuracy of judgements. Participants who reported to be more familiar with 473 Allrecipes provided significantly more accurate judgements on recipes from this portal. Familiarity 474 with Xiachufang and Kochbar, on the other hand, had no significant influence on accuracy of images 475 from these portals. Participants unfamiliar with Allrecipes and Kochbar were better in judging the 476 recipes from Xiachufang.

477 Participants who reported being interested in food or recipes from foreign cultures achieved
478 higher accuracy overall. Similarly, those participants who reported trying food from other cultures
479 were also more accurate in the labelling task.

The analyses in this section have shown that it is not only the participants' culture that influences
the labels that they apply. Individual traits and personal experience also played a role in the labels
that were assigned, and the accuracy achieved.

483 4. Discussion and Conclusion

The analyses, reported in the previous section, shed light on how visual-based choices can be influenced by diverse factors including cultural differences, but also by a range of other contextual properties. We focused on the task of labelling foods with a particular location because of the importance of food to human life and the visual nature of food choices.

488 In a first step, we compared the performance of human judges from 3 countries with the 489 automated classifiers employing machine learning approaches. Next, to better understand how the 490 participants interpret the image visual cues they were presented with, we attempted to use the same 491 machine learning approaches to understand which features help predict the labels participants assign. 492 Finally, we examined the performance of participants from different groups with different 493 demographics and properties across images from the three collections. The results of the analyses 494 performed help answer our research questions, introduced in Section 1. We summarise the insights 495 learned in relation to the research questions below:

In response to RQ1 our experiments show that classification algorithms can achieve high accuracy when determining the source of recipes based solely on visual properties of the image associated with a recipe. Almost all of the image properties tested provided some useful signal for this task, the strongest being provided by DNN. Overall images from the Chinese recipe portal were labelled most accurately, with recipe images from The US and German portals more likely to be confused. The results show that the Chinese-sourced images were more visually distinct than those from *Allrecipes* and *Kochbar*.

504 Our results show that humans are far less accurate at the same task. While in the literature there 505 is evidence that for other food classification tasks the best performing algorithms can perform 506 comparably with human labellers [6] our findings, for this particular task, are even stronger. The 507 evidence suggests that unlike the machine learning approaches, humans abstract or interpret the 508 visual features to derive semantic features, such as the ingredients a meal contains or how it may 509 taste. As this process is based on personal knowledge or experience the act of classification becomes 510 biased, which evidently negatively influences accuracy. When humans made classification errors, 511 however, the trend in their mistakes was the same as for the machine learning approach. The Chinese 512 sourced images were more likely to be accurately labelled, while those from the German and US sites 513 were more likely to be confused. The confidence associated with the labels applied confirm that the 514 participants were aware of this trend. It is not easy to compare our findings to past results from the 515 literature given the specific nature of the tasks studied. The task studied in our case - determining the 516 source of a recipe - is much more challenging than that studied by [6], which made it ripe for 517 identifying the biases involved. Moreover, unlike in [11], the visual biases we uncovered did not 518 improve human classification performance, but rather hindered it.

519

520 Underlining the diverse biases at play in the labelling task, the experiments showed that 521 predicting the labels participants applied turned out to be a much more challenging machine learning 522 task than predicting the actual source website for the recipe. The performance of human labellers was 523 substantially poorer than the algorithms. The collected data shed some light as to why this was the 524 case. The participants reported several features of the images as being influential when making their 525 decisions although some justifications were more useful than others. The features dominant in the 526 literature for food perception tasks, such as colour[18,41] and shape[42] were less important than the 527 ingredients present and type of dish. Our results show that if the participants recognised the dish 528 type from the image, it is more likely for them to make the right choice. Moreover, participants were 529 able to improve their performance by identifying factors in the image, which have nothing to do with 530 the food itself, but offer discriminative power. Eating utensils, such as cutlery or chopsticks or text 531 being present in the image were prominent examples. The results, moreover, demonstrate that 532 participants with different demographics perform differently on this task. Experiences of the culture 533 and familiarity with the recipe portal both had an influence on participant accuracy. The modelling 534 work identified other demographic factors that superficially look to be important, such as age and 535 gender. We posit, however, that differing sampling mixes across the countries mean that these are 536 largely tied to interest in and experience of the food culture.

537 4.4. Implications of the results

538 In this section we discuss what we believe to be the implications of our results. We relate our 539 findings to the problem of food recommendation, which is our main area of interest, but we also 540 make notes of caution with respect to the use of crowd-sourcing platforms when collecting data for 541 food identification tasks.

542 Our findings underline that the way people perceive images of food differs fundamentally based 543 on different factors. The primary factor we studied was the participant's country of residence and we 544 discovered that this directly influenced the labels applied to images in the study. While we did not 545 study food preference directly, our findings do have consequences for the development of food 546 recommendation systems since familiarity with food - and visual familiarity in particular - is strongly 547 related to food preference [43,44]. The foods people find desirable - and to what extent they are 548 willing to try something new - are tightly bound to their cultural upbringing and to physical and 549 emotional reactions to food experiences in the past [43], but also depend on individual traits, such as 550 openness to experience [45]. We also note in our findings that the perception of images and the 551 resulting labels were correlated with several demographic factors, such as familiarity with the recipe 552 portals and interests in food and recipes from foreign cultures.

553 This reinforces the need for food recommendation systems to model and account for contextual 554 variables when making personalised food recommendations. Our results also offer an explanation as 555 to why - in contrast to many other domains, such as music or film recommendation - standard 556 recommendation technologies do not perform well for the recommendation of food [46].

557 Certainly, more research is required to understand which contextual factors are important and 558 how these can best be modelled and incorporated in recommendation algorithms. Our findings 559 underline the importance of culture as a dimension in combination with other demographic factors. 560 Initial work in this direction has been initiated in the domain of music recommendation (e.g., [47]), 561 but no equivalent research exists for the recommendation of food.

562 The results here additionally have implications for the collection of data for food identification 563 research using crowdsourcing platforms, such as Amazon Mechanical Turk. Crowdsourcing has 564 become popular in diverse research areas because it can be used to recruit a large sample of workers 565 in a short period of time for relatively little financial outlay. This method was used in the largest 566 dataset available for food identification [48]. However, as our results show, caution is necessary when 567 taking this approach. Differing cultural backgrounds, personal experiences and interests will 568 influence how food images are perceived. Moreover, as our experience with recruiting in Amazon 569 Mechanical Turk showed, it is challenging to ensure diversity in participants. This problem has been 570 noted by other scholars who are working to address this issue algorithmically [49].

571 4.5. Limitations of the study

572 There are several limitations to our work that we wish to acknowledge. To maximise the number 573 of images tested, and thus the generalisability of our findings, our experiments were designed, such 574 that images were only labelled by a single participant. This has the disadvantage that we have no 575 means to compare labels applied across participants or groups of participants. In future work we aim 576 to complement the analyses here with a design that allows multiple judgements for single images to 577 be compared as in [50] and [51].

A second limitation to note is the presence of text in some of the images which, as reported above, influenced the labels assigned by some participants. Based on the free-text explanations provided by participants, text only appeared in the images sourced from *Xiachufang* and *Kochbar*, with 30 and 19 recipe images with text being reported in these portals, respectively. Although we reported the use of this text as a finding, it was not our attention to study such images.

Building on this work, our future research will explore whether similar cross-cultural biases are present when users apply subjective labels to recipes. We plan to employ a similar experimental setup but collect data on participants' subjective impression of recipes (e.g., their attractiveness, how willing they are to cook and eat them etc.). This would complement the findings presented in this paper nicely and would offer concrete utility with respect to the design of food recommendation systems.

In this work we have explored the influence of contextual factors on the way people perceive images of food. In our experiments, where human annotators and machine learning algorithms labelled images of food, the algorithmic approach outperformed the human labellers by a large margin. Further analyses reveal several reasons why annotators miss-classified, including basing judgements on factors that are coloured by past experience and knowledge.

judgements on factors that are coloured by past experience and knowledge.

Author Contributions: Conceptualisation: Qing Zhang, David Elsweiler and Christoph Trattner; Supervision:
David Elsweiler and Christoph Trattner; Investigation: Qing Zhang, David Elsweiler, Christoph Trattner;
Visualization: Qing Zhang; Writing - original draft: Qing Zhang; Writing, Review & Editing: David Elsweiler
and Christoph Trattner. All authors have read and agreed to the published version of the manuscript.

598 **Funding:** This research was funded by China Scholarship Council.

599 **Conflicts of Interest:** The authors declare no conflict of interest. This study was supported by a grant from the 600 China Scholarship Council. The funders had no role in the design of the study; in the collection, analyses, or 601 interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

- 602
- 603 References

- 1. Brascamp, J.; Blake, R.; Knapen, T. Negligible fronto-parietal BOLD activity
- accompanying unreportable switches in bistable perception. *Nat. Neurosci.* 2015, *18*, 1672–
 1678, doi:10.1038/nn.4130.
- 607 2. Dean, M.; Neligh, N. Experimental Tests of Rational Inattention. 55.
- 608 3. Clement, J.; Aastrup, J.; Charlotte Forsberg, S. Decisive visual saliency and consumers'
- 609 in-store decisions. J. Retail. Consum. Serv. 2015, 22, 187–194,
- 610 doi:10.1016/j.jretconser.2014.09.002.
- 611 4. Dayan, E.; Bar-Hillel, M. Nudge to nobesity II: Menu positions influence food orders.
- 612 Judgm. Decis. Mak. 2011, 6, 11.
- 613 5. Chen, L.; Pu, P. Eye-Tracking Study of User Behavior in Recommender Interfaces. In
- 614 User Modeling, Adaptation, and Personalization; De Bra, P., Kobsa, A., Chin, D., Eds.;
- 615 Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010;
- 616 Vol. 6075, pp. 375–380 ISBN 978-3-642-13469-2.
- 617 6. Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Ofli, F.; Weber, I.; Torralba, A. Learning
- 618 Cross-Modal Embeddings for Cooking Recipes and Food Images. In Proceedings of the
- 619 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE:
- 620 Honolulu, HI, 2017; pp. 3068–3076.
- 621 7. Khosla, A.; Zhou, T.; Malisiewicz, T.; Efros, A.A.; Torralba, A. Undoing the Damage
- 622 of Dataset Bias. In Computer Vision ECCV 2012; Fitzgibbon, A., Lazebnik, S., Perona,
- 623 P., Sato, Y., Schmid, C., Eds.; Lecture Notes in Computer Science; Springer Berlin
- 624 Heidelberg: Berlin, Heidelberg, 2012; Vol. 7572, pp. 158–171 ISBN 978-3-642-33717-8.
- 625 8. Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the CVPR
- 626 2011; IEEE: Colorado Springs, CO, USA, 2011; pp. 1521–1528.
- 627 9. PALMER, S. Canonical perspective and the perception of objects. *Atten. Perform.*
- 628 **1981**, 135–151.
- 629 10. Ellis, W.D. *A Source Book of Gestalt Psychology*; Gestalt Legacy Press, 1938; ISBN
 630 978-1-892966-00-1.
- 631 11. Vondrick, C.; Pirsiavash, H.; Oliva, A.; Torralba, A. Learning visual biases from
- 632 human imagination. In Advances in Neural Information Processing Systems 28; Cortes, C.,
- 633 Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc., 2015;
- 634 pp. 289–297.
- 635 12. Zhu, Y.-X.; Huang, J.; Zhang, Z.-K.; Zhang, Q.-M.; Zhou, T.; Ahn, Y.-Y. Geography
- and Similarity of Regional Cuisines in China. *PLoS ONE* **2013**, *8*, e79161,
- 637 doi:10.1371/journal.pone.0079161.
- 638 13. Ahn, Y.-Y.; Ahnert, S.E.; Bagrow, J.P.; Barabási, A.-L. Flavor network and the
- 639 principles of food pairing. *Sci. Rep.* **2011**, *1*, 196, doi:10.1038/srep00196.
- 640 14. Zhang, C.; Yue, Z.; Zhou, Q.; Ma, S.; Zhang, Z.-K. Using social media to explore
- regional cuisine preferences in China. Online Inf. Rev. 2019, 43, 1098–1114,
- 642 doi:10.1108/OIR-08-2018-0244.
- 643 15. Trattner, C.; Moesslang, D.; Elsweiler, D. On the predictability of the popularity of
- online recipes. *EPJ Data Sci.* **2018**, *7*, 20, doi:10.1140/epjds/s13688-018-0149-5.

- 645 16. San Pedro, J.; Siersdorfer, S. Ranking and classifying attractiveness of photos in
- 646 folksonomies. In Proceedings of the Proceedings of the 18th international conference on
- 647 World wide web WWW '09; ACM Press: Madrid, Spain, 2009; p. 771.
- 648 17. Messina, P.; Dominguez, V.; Parra, D.; Trattner, C.; Soto, A. Content-based artwork
- 649 recommendation: integrating painting metadata with neural and manually-engineered visual
- 650 features. User Model. User-Adapt. Interact. 2019, 29, 251–290, doi:10.1007/s11257-018-
- 651 9206-9.
- 18. Spence, C.; Levitan, C.A.; Shankar, M.U.; Zampini, M. Does Food Color Influence
- Taste and Flavor Perception in Humans? *Chemosens. Percept.* **2010**, *3*, 68–84,
- 654 doi:10.1007/s12078-010-9067-z.
- 19. Spence, C. On the psychological impact of food colour. *Flavour* 2015, *4*, 21,
- 656 doi:10.1186/s13411-015-0031-3.
- 657 20. Chapelle, O.; Haffner, P.; Vapnik, V.N. Support vector machines for histogram-based
- 658 image classification. IEEE Trans. Neural Netw. 1999, 10, 1055–1064,
- 659 doi:10.1109/72.788646.
- 660 21. Kaur, K.P.; Singh, C.; Bhullar, E.W. Color Image Retrieval Using Color Histogram
- and Orthogonal Combination of Linear Binary Pattern. In Proceedings of the Proceedings
- of the 2014 Indian Conference on Computer Vision Graphics and Image Processing -
- 663 ICVGIP '14; ACM Press: Bangalore, India, 2014; pp. 1–8.
- 664 22. Ojala, T.; Pietikainen, M. A COMPARATIVE STUDY OF TEXTURE MEASURES
- 665 WITH CLASSIFICATION BASED ON FEATURE DISTRIBUTIONS. 9.
- 666 23. Liao, S.; Zhu, X.; Lei, Z.; Zhang, L.; Li, S.Z. Learning Multi-scale Block Local Binary
- 667 Patterns for Face Recognition. In Advances in Biometrics; Lee, S.-W., Li, S.Z., Eds.;
- 668 Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007;
- 669 Vol. 4642, pp. 828–837 ISBN 978-3-540-74548-8.
- 670 24. Yuan, X.; Yu, J.; Qin, Z.; Wan, T. A SIFT-LBP Image Retrieval Model Based on Bag-
- 671 of-Features. *Th IEEE Int. Conf. Image Process.* **2011**, 4.
- 672 25. Trefný, J.; Matas, J. Extended Set of Local Binary Patterns for Rapid Object Detection.
 673 7.
- 674 26. Mikolajczyk, K.; Schmid, C. A Performance Evaluation of Local Descriptors. *IEEE*
- 675 Trans. PATTERN Anal. Mach. Intell. 2005, 27, 16.
- 676 27. DeCost, B.L.; Holm, E.A. A computer vision approach for automated analysis and
- 677 classification of microstructural image data. Comput. Mater. Sci. 2015, 110, 126–133,
- 678 doi:10.1016/j.commatsci.2015.08.011.
- 679 28. Jurie, F.; Triggs, B. Creating efficient codebooks for visual recognition. In Proceedings
- of the Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1;
- 681 IEEE: Beijing, China, 2005; pp. 604-610 Vol. 1.
- 682 29. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep
- 683 convolutional neural networks. *Commun. ACM* **2017**, *60*, 84–90, doi:10.1145/3065386.
- 684 30. Szegedy, C.; Wei Liu; Yangqing Jia; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.;
- 685 Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the

- 686 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE:
- 687 Boston, MA, USA, 2015; pp. 1–9.
- 688 31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition.
- 689 *ArXiv151203385 Cs* **2015**.
- 690 32. Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep Learning for
- 691 Identifying Metastatic Breast Cancer. ArXiv160605718 Cs Q-Bio 2016.
- 692 33. Liu, L.; Wang, H.; Wu, C. A machine learning method for the large-scale evaluation of
- 693 urban visual environment. 16.
- 694 34. Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101 Mining Discriminative
- 695 Components with Random Forests. In Computer Vision ECCV 2014; Fleet, D., Pajdla, T.,
- 696 Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer International
- 697 Publishing: Cham, 2014; Vol. 8694, pp. 446–461 ISBN 978-3-319-10598-7.
- 698 35. Myers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; Gorban, A.; Silberman, N.;
- 699 Guadarrama, S.; Papandreou, G.; Huang, J.; Murphy, K. Im2Calories: Towards an
- 700 Automated Mobile Vision Food Diary. In Proceedings of the 2015 IEEE International
- 701 Conference on Computer Vision (ICCV); IEEE: Santiago, Chile, 2015; pp. 1233–1241.
- 702 36. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale
- 703 Image Recognition. *ArXiv14091556 Cs* **2015**.
- 704 37. Pan, L.; Pouyanfar, S.; Chen, H.; Qin, J.; Chen, S.-C. DeepFood: Automatic Multi-
- 705 Class Classification of Food Ingredients Using Deep Learning. In Proceedings of the 2017
- 706 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC); IEEE:
- 707 San Jose, CA, 2017; pp. 181–189.
- 708 38. Chen, J.; Ngo, C. Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In
- 709 Proceedings of the Proceedings of the 2016 ACM on Multimedia Conference MM '16;
- 710 ACM Press: Amsterdam, The Netherlands, 2016; pp. 32–41.
- 711 39. Kusmierczyk, T.; Trattner, C.; Nørvåg, K. Understanding and Predicting Online Food
- 712 Recipe Production Patterns. In Proceedings of the Proceedings of the 27th ACM
- 713 Conference on Hypertext and Social Media HT '16; ACM Press: Halifax, Nova Scotia,
- 714 Canada, 2016; pp. 243–248.
- 715 40. Farinella, G.M.; Allegra, D.; Moltisanti, M.; Stanco, F.; Battiato, S. Retrieval and
- 716 classification of food images. Comput. Biol. Med. 2016, 77, 23–39,
- 717 doi:10.1016/j.compbiomed.2016.07.006.
- 718 41. Appleton, K.M.; Smith, E. A Role for Identification in the Gradual Decline in the
- 719 Pleasantness of Flavors With Age. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2016, 71, 987-
- 720 994, doi:10.1093/geronb/gbv031.
- 42. Geirhos, R.; Michaelis, C.; Wichmann, F.A.; Rubisch, P.; Bethge, M.; Brendel, W.
- 722 IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING
- 723 SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS. 2019, 22.
- 43. Aldridge, V.; Dovey, T.M.; Halford, J.C.G. The role of familiarity in dietary
- 725 development. Dev. Rev. 2009, 29, 32–44, doi:10.1016/j.dr.2008.11.001.

- 44. Heath, P.; Houston-Price, C.; Kennedy, O.B. Increasing food familiarity without the
- tears. A role for visual exposure? *Appetite* **2011**, *57*, 832–838,
- 728 doi:10.1016/j.appet.2011.05.315.
- 45. Tan, H.S.G.; van den Berg, E.; Stieger, M. The influence of product preparation,
- familiarity and individual traits on the consumer acceptance of insects as food. *Food Qual.*
- 731 Prefer. 2016, 52, 222–231, doi:10.1016/j.foodqual.2016.05.003.
- 732 46. Trattner, C.; Elsweiler, D. Food Recommender Systems: Important Contributions,
- 733 Challenges and Future Research Directions. *ArXiv171102760 Cs* 2017.
- 47. Schedl, M.; Knees, P.; McFee, B.; Bogdanov, D.; Kaminskas, M. Music Recommender
- 735 Systems. In Recommender Systems Handbook; Ricci, F., Rokach, L., Shapira, B., Eds.;
- 736 Springer US: Boston, MA, 2015; pp. 453–492 ISBN 978-1-4899-7636-9.
- 48. Marin, J.; Biswas, A.; Ofli, F.; Hynes, N.; Salvador, A.; Aytar, Y.; Weber, I.; Torralba,
- 738 A. Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and
- 739 Food Images. *ArXiv181006553 Cs* **2019**.
- 740 49. Goel, N.; Faltings, B. Crowdsourcing with Fairness, Diversity and Budget Constraints.
- 741 ArXiv181013314 Cs 2019.
- 50. Elsweiler, D.; Trattner, C.; Harvey, M. Exploiting Food Choice Biases for Healthier
- 743 Recipe Recommendation. In Proceedings of the Proceedings of the 40th International ACM
- 744 SIGIR Conference on Research and Development in Information Retrieval; ACM:
- 745 Shinjuku Tokyo Japan, 2017; pp. 575–584.
- 746 51. Rokicki, M.; Trattner, C.; Herder, E. The Impact of Recipe Features, Social Cues and
- 747 Demographics on Estimating the Healthiness of Online Recipes. 10.
- 748 749

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).