
Pragmatic Evaluation of Folksonomies

Denis Helic
Graz University of Technology

Graz, Austria
dhelic@tugraz.at

Markus Strohmaier
Graz University of Technology

and Know-Center Graz
Graz, Austria

markus.strohmaier@tugraz.at

Christoph Trattner
Graz University of Technology

Graz, Austria
ctrattner@iicm.edu

Markus Muhr
Know-Center Graz

Graz, Austria
mmuhr@know-center.at

Kristina Lerman
University of Southern

California
Marina del Rey, CA, USA

lerman@isi.edu

ABSTRACT
Recently, a number of algorithms have been proposed to obtain
hierarchical structures — so-called folksonomies — from social
tagging data. Work on these algorithms is in part driven by a belief
that folksonomies are useful for tasks such as: (a) Navigating social
tagging systems and (b) Acquiring semantic relationships between
tags. While the promises and pitfalls of the latter have been stud-
ied to some extent, we know very little about the extent to which
folksonomies are pragmatically useful for navigating social tagging
systems. This paper sets out to address this gap by presenting and
applying a pragmatic framework for evaluating folksonomies. We
model exploratory navigation of a tagging system as decentralized
search on a network of tags. Evaluation is based on the fact that
the performance of a decentralized search algorithm depends on
the quality of the background knowledge used. The key idea of
our approach is to use hierarchical structures learned by folkson-
omy algorithms as background knowledge for decentralized search.
Utilizing decentralized search on tag networks in combination with
different folksonomies as hierarchical background knowledge al-
lows us to evaluate navigational tasks in social tagging systems.
Our experiments with four state-of-the-art folksonomy algorithms
on five different social tagging datasets reveal that existing folkson-
omy algorithms exhibit significant, previously undiscovered, differ-
ences with regard to their utility for navigation. Our results are rele-
vant for engineers aiming to improve navigability of social tagging
systems and for scientists aiming to evaluate different folksonomy
algorithms from a pragmatic perspective.
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1. INTRODUCTION
In recent years, social tagging systems have emerged as an al-

ternative to traditional forms of organizing information. Instead of
enforcing rigid taxonomies with controlled vocabulary, social tag-
ging systems allow users to freely choose so-called tags to annotate
resources. In past research, it has been suggested that social tag-
ging systems can be used to acquire latent hierarchical structures
that are rooted in the language and dynamics of the underlying user
population [7, 3, 13, 14]. The notion of “folksonomies1” - from
folk-generated taxonomies - emerged to characterize this idea.

A number of algorithms have been proposed in the past to ob-
tain folksonomies from social tagging data [13, 22, 3]. Such folk-
sonomies could potentially be useful for a number of tasks, includ-
ing: (a) Navigating unstructured information collections, such as
social tagging systems and (b) Acquiring semantic relationships be-
tween tags. While the promises and pitfalls of the latter have been
studied to some extent ([6, 20, 21]), to the best of our knowledge
there is no comprehensive attempt to assess the extent to which
folksonomies are pragmatically useful for tasks such as navigation.
This paper sets out to address this gap.

As the main contribution of this paper, we introduce a novel
framework for the pragmatic (i.e. task-oriented) evaluation of folk-
sonomies. This framework is completely general. It can be used to
measure the performance of some folksonomy on some navigation
task according to some predefined metric for a given dataset. In
this paper, we illustrate the framework by evaluating the perfor-
mance of four different folksonomy algorithms on an exploratory
navigation task for five different datasets. Specifically, we view ex-
ploratory navigation in a tagging system as a decentralized search,
an approach originally developed to model and evaluate searcha-
bility of social [17] and communication networks [1]. We show
the theoretical suitability of folksonomies for supporting decentral-
ized search, and put them to a navigational task by using them as
background knowledge for exploratory navigation. We simulate
exploratory navigation behavior (browsing) of users in tagging sys-
tems [32] in the following way: In each simulation, an agent’s task
is to navigate from a starting resource node to a set of resources
that are weakly-connected through some common topics (e.g. all
resources related to Toronto, university, campus). The
agent navigates the system with local knowledge (local neighbour-
hood of the tag graph) and hierarchical background knowledge (a
given folksonomy) only. Then, the extent to which an agent can
successfully identify short paths between a starting node and the

1http://www.vanderwal.net/folksonomy.html



target resources (using local and background knowledge), and the
agent’s efficiency in doing so is indicative of the pragmatic util-
ity of a given folksonomy for exploratory navigation. The agents
use a search strategy based on Kleinberg’s decentralized search al-
gorithm with hierarchical background knowledge [19], where the
output produced by different folksonomy algorithms (i.e. hierar-
chical structures) is used as an input to a decentralized search algo-
rithm (hierarchical background knowledge). Such an approach al-
lows us to answer two important questions related to folksonomies:
(a) Can folksonomies inform efficient navigation in social tagging
systems? and if so, (b) Do state-of-the-art folksonomy algorithms
exhibit differences in their performance on this task?

Our results show that existing folksonomy algorithms differ sig-
nificantly with regard to their utility for exploratory navigation,
which requires new ways of thinking about mechanisms for folk-
sonomy induction and evaluation. Our results suggest that prag-
matic evaluation represents an important complement to existing
semantic evaluation strategies for emergent taxonomic structures
(such as semantic evaluation [8]).

In our previous work on semantic evaluation of folksonomies
we introduced a framework that compares learned folksonomies
to a reference hierarchy [26, 28]. We used two metrics - Lexical
Recall and Taxonomic Overlap. Lexical Recall computes recall -
how many terms exist in both the learned folksonomy and reference
directory. Our Taxonomic Overlap is an adapted measure of that
measure introduced in [23]. It computes how many parent-child
pairs are in correct order. As reference taxonomy we used DMOZ
(Open Directory Project).

Further measures for semantic evaluation of conceptual hierar-
chies include the Augmented Precision & Recall [10] and OntoRand
[5]. Augmented Precision & Recall can be divided into a global and
a local measure. The measures compare two concepts based on
their distance in the hierarchy, i.e. the height of their least common
ancestor. Further developments adopt the same approach but take
into account e.g. the hierarchy branching factor. On the other hand,
OntoRand is a symmetric measure extending hierarchical cluster-
ing methods for comparing two partitions of instances. In details,
OntoRand has two alternative possibilities to measure similarity of
concept hierarchies: the first investigates common ancestors of two
concepts, whereas the second one is, similarly to Augmented Pre-
cision & Recall, based on the distance (represented through the
height of their least common ancestor) between two concepts in
the hierarchy. What these approaches have in common is a focus
on analyzing semantic aspects, analyzing the pragmatic utility of
folksonomies represents a new perspective on folksonomy evalua-
tion.

The paper is structured as follows: First, we will explain Klein-
berg’s decentralized search, and how it ties into our evaluation ap-
proach. After that, we validate the framework by applying it to four
folksonomy induction algorithms on five different datasets. Finally,
we conclude by discussing implications for folksonomy research.

2. DECENTRALIZED SEARCH
The basic idea of our framework is to use the output produced

by different folksonomy algorithms (i.e. hierarchical structures) as
input (background knowledge) for decentralized search in social
tagging systems. Decentralized search assumes that a search agent
only has local knowledge of the network structure, i.e., no knowl-
edge of the network beyond its immediate 1-hop neighbourhood.
As such, decentralized search is a natural model of the user navi-
gation in hypertext systems where users at any given page are only
aware of the links emanating from that page and users usually do
not posses any knowledge whatsoever about links from other pages

in the system. Therefore, decentralized search represents a very
natural model of navigating tagging systems.
Decentralized Search. In decentralized search on a network, an
algorithm starts its search at an arbitrary start node and tries to
reach an arbitrary destination node. Search is carried out by mov-
ing along the links in the network in a number of intermediate steps.
At each step, the decision which links to follow is made based on
local knowledge of the network only. In other words, apart from the
destination node, the search algorithm knows only the immediate
neighbors.

Research on decentralized search was, for the most part, inspired
by Milgrams’s “small world experiment” [25]. In this experiment,
selected people in Nebraska received a letter they were then asked
to send through their social contacts to a stockbroker in Boston.
The striking result of the study was that, for those letters reaching
the destination, the average number of hops was around 6, i.e. the
population of the USA constituted a “small world.”
Hierarchical Background Knowledge. Later, Kleinberg analyzed
an implicit result of the Milgram’s experiment, the ability of hu-
mans to find a short path when there is such a path between two
nodes [18, 16, 19]. Kleinberg concluded that social networks pos-
sess certain latent properties that humans are aware of. This back-
ground knowledge of network structure allows humans to find a
short path between two arbitrary network nodes efficiently. Klein-
berg defined an “efficiently” searchable network as a network for
which a decentralized search algorithm exists, such that its delivery
time (the number of nodes that the algorithm needs to visit before
it reaches the destination node) is polynomial in logN , where N is
the number of nodes in the network.

Subsequent work has investigated the nature of background knowl-
edge that is required for efficient decentralized search algorithms.
In other words: What structural properties do efficiently search-
able networks possess? To that end, Kleinberg designed a number
of network models such as the 2D-grid model [16], hierarchical
model [19], and group model [19]. Independently, Watts [34] in-
troduced the notion of social identity as a membership in a number
of social groups organized in hierarchies and showed the existence
of efficient decentralized search algorithms by simulation.

Both of these hierarchical network models are based on the idea
that, in many settings, the nodes from a network are organized in
a taxonomy (Kleinberg’s model) or a number of independent tax-
onomies (Watts’ model). The taxonomies can be represented as
b-ary trees where network nodes are attached to the leaves of the
trees. The basic feature of these models is then the notion of dis-
tance between two nodes in the network. Kleinberg defines the
distance between two nodes v and w to be the height h(v, w) of
the least common ancestor of v and w in the tree. Watts defines the
distance between two nodes to be the minimum tree distance (in
the sense of the height of the least common ancestor of these two
nodes) over all model hierarchies.

The crucial structural property of the class of searchable net-
works is that the probability of two nodes being connected by a
link decreases with their hierarchy distance. Nodes are highly in-
terlinked locally with other nodes from their immediate hierarchy
neighborhood. On the other hand, there are only a few so-called
long-range links between any given node and more distant nodes
(however, such long-range links keep the network connected and
are essential for the existence of short paths in the network). This
structural property can be formally introduced as a probability link-
ing distribution defined as a function of node distance. Thus, in
searchable networks the probability that nodes v and w are con-
nected by a link decreases exponentially with h(v, w).

Next, Kleinberg (theoretically) [19] and Watts (by simulation)
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Figure 1: Examples of folksonomies obtained from tagging data using (a) Random (b) Affinity Propagation (c) Hierarchical K-Means
and (d) Tag Similarity Graph (DegCen/Cooc) algorithms. The different algorithms produce significantly different folksonomies, their
pragmatic usefulness for tasks such as navigation is generally unknown. The visualizations include the top four folksonomy levels
of the Delicious dataset. The color gradient starts at red for the top level and proceeds to blue for the fourth level – DegCen/Cooc
produces broader hierarchies that other algorithms, and Aff. Prop. hierarchies are broader than K-Means on the first few levels.

[34] showed that for networks with such link probability distribu-
tions efficient sub-linear decentralized search algorithms exist. The
algorithm starts at an arbitrary start node and moves to an arbitrary
destination node by adopting a simple greedy searching strategy.
At each time step the algorithm moves to a neighbor node that is
closest to the destination node, i.e., it is at the smallest hierarchy
distance to it. The basic idea behind such a greedy strategy is that
there is a high probability to find a link to the destination node in its
immediate neighborhood, simply because local links are abundant
in the network.

Utility of Background Knowledge. In [1] Adamic investigated
decentralized search in social networks. Adamic conducted a se-
ries of experiments by simulating search in an organizational e-
mail network and an online student network. The simulations used
different hierarchies as background knowledge, e.g., for search in
the e-mail network an organizational hierarchy and a hierarchy re-
flecting the position of a person in the physical space have been
applied. Results showed that both of these hierarchies can be ef-
fectively used to support decentralized search, but in one case (the
online student network), the simulation results were less successful.

3. EVALUATION FRAMEWORK
An important result of Adamic’s experiments is the discovery

that the performance of a decentralized search algorithm depends
on the quality of the hierarchical background knowledge. These
findings are consistent with Milgram’s original “small world” ex-
periment. Travers [33] analyzed the letter chains that reached the
target by dividing them into two groups: those that reached the
target through the professional contacts and those that reached the
target through geography. On average, those that reached the target
through geographical assumptions needed more steps. The differ-
ence in the number of steps was found to be statistically significant.

Our folksonomy evaluation framework is based on this insight.
The performance of an agent’s navigation task where the agent uses
folksonomies as background knowledge depends on the suitability
of that folksonomy to find shortest paths between nodes. An agent
might perform better (i.e. its delivery time, or its failure rate in

finding the target node is smaller) using one folksonomy instead
of another. Thereby, two questions about folksonomies can be an-
swered:

1. Are folksonomies suitable as background knowledge for navi-
gating tagging systems?

2. If a given number of folksonomies are suitable, which one is
better?

As navigation can be modeled as decentralized search, the answers
to these questions provide insight into the suitability of folksonomies
for navigation from a pragmatic point of view.

In our framework, a tagging dataset is modeled as a tripartite hy-
pergraph with V = R∪U∪T , whereR is the resource set, U is the
user set, and T is the tag set [7, 31, 29]. An annotation of a partic-
ular resource with a particular tag produced by a particular user is
a hyperedge (r, t, u), connecting three nodes from these three dis-
joint sets. Such a tripartite hypergraph can be mapped onto three
different bipartite graphs connecting users and resources, users and
tags, and tags and resources, or onto e.g. tag-tag graphs. For dif-
ferent purposes it is often more practical to analyze one or more of
these graphs. For example, in the context of ontology learning, the
bipartite graph of users and tags has been shown to be an effective
projection [24]. In this paper, we focus on navigating the tag–tag
graphs, to mimic tag-based navigation. However, while we limit
our investigations to these graphs for practical reasons, our frame-
work supports evaluations of other graphs as well, e.g. bipartite
tag-resource graphs.

The pragmatic folksonomy evaluation framework consists of the
following steps:

(i) Folksonomy induction. The common objective of folksonomy
induction algorithms is to produce a hierarchical structure (“folk-
sonomy”) from unstructured data in a tagging system. Such algo-
rithms analyze various evidence such as tag–resource graphs [24],
tag-tag graphs [13], tag coocurrence [31], etc to learn hierarchical
relations between tags. We describe several folksonomy induction
algorithms in greater detail in Sec. 4.2. Examples of folksonomies
obtained from a Delicious dataset are shown in Figure 1.
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Figure 2: Decentralized Search: An example of decentralized search in a network of tags (a) using hierarchical background knowl-
edge (b). The tag network links tags if they are used to annotate the same resource. The search begins at the yellow node 13. The
destination node is the red node 33. At each step, the search algorithm selects one of the current node’s adjacent nodes, which is
the closest to the destination node in the hierarchy. The numbers in boxes in (b) provide the distance between the current node
and the destination node 33. At step one, node 13 has a single adjacent node 1, so search continues to 1. At step two, 1’s adjacent
nodes include 11, 12, 13, 14, 15, 21, 22, and 23. The algorithm consults the hierarchy finding out that node 21 is the closest to the
destination node. At step three, the algorithm has an option to move to nodes 1, 2, or 3. Search selects node 3 since again, it has the
smallest distance to the destination node. Finally, at step 4, the destination node is successfully reached.

(ii) Classification of searchable networks. Next, we calculate
a distribution of the distance d between tags in a folksonomy for
connected tags in the tag-tag network. This distance distribution
is then analyzed to see how it compares with the theoretical class
of searchable networks. Watts [34] analyzed a theoretical network
model based on an exponential link distribution ce−αd where c is
a normalizing constant, α is a tunable parameter, and d is the dis-
tance in a socially relevant hierarchy, e.g., a profession hierarchy.
Depending on the value of the parameter α, the network might be
classified as searchable or unsearchable [34]. The distribution mod-
els social networks and the probability of people to be acquainted
with other people. The intuition behind the α parameter is that
this parameter measures the tendency of people to be acquainted
with other “similar” people. When e−α � 1, the generated net-
work consists of disconnected cliques, i.e., the world is completely
homophilous. On the other hand, if any person has the same prob-
ability to be acquainted with any other person (yielding a random
network), then e−α = b where b is the branching factor of the hi-
erarchy in question. The distance distribution in this case takes the
form bd. Watts showed that almost all searchable networks display
α > 0 and are situated between these two extremes. The search-
able networks are essentially homophilous but not completely so,
i.e., there is always a certain number of long-ranged links that con-
nect different cliques with each other. By applying this analysis
to folksonomies, we can assess the theoretical suitability of folk-
sonomies for decentralized search.

(iii) Modeling navigation. We select a number of nodes (here:
100,000 resource nodes) uniformly at random from the tagging
network. Each of these nodes represents a starting node for de-
centralized search, modeling an arbitrary user entry page into the
system (e.g. a landing page from a search engine, the latest re-
source from a news feed, homepage, or similar). We assume that
users who come to the tagging system and do not have their infor-
mation need satisfied would explore the system to find one or more
related topics or resources of current interest. To model this, we
select another resource node from the tagging network uniformly
at random. Tags associated with the second resource are both re-
lated to each other (they overlap at least at the second resource) and
represent a collection of related resources that a user might be in-
terested in. Therefore, we define those tags as target nodes for the
search agent. Henceforth, we will call the pair of a start node and
a set of target nodes a search pair. The goal of the agent is to find

a short path from the starting node to one of the target nodes in the
search pair.
(iv) Defining evaluation metrics. We use length of the shortest
path as the performance metric in the evaluation. This reflects a
typical scenario of exploratory search. In case that the landing page
(start node) does not satisfy a user’s information need, the user will
explore the tagging system by navigating to related tags in order to
find relevant topics and resources as quickly as possible, i.e., with
as few clicks as possible. We calculate the global shortest path
between nodes from each search pair using breadth first search. If
there is no global path between nodes from a pair (i.e. when one of
the target nodes does not belong to the giant component) then this
node is removed from future calculations. The global shortest path
between nodes is used later on as a reference value for measuring
the effectiveness of decentralized search.
(v) Simulation. We simulate exploratory navigation by performing
decentralized search using a greedy search strategy on the search
pairs. The folksonomy is applied as background knowledge to pro-
vide the notion of distance between nodes. The distance is calcu-
lated as proposed in [1]. The parent node and the sibling nodes are
considered to be at distance d = 1. From there on, the distance
is recursively assigned, e.g., the parent’s siblings are at distance
d = 2, the children of the parent’s siblings are at distance d = 3
and so on. An illustrative example is shown in Figure 2. Although
search starts at a resource node, as soon as the first tag is selected,
the search becomes a search in the tag–tag network. At each step,
the algorithm knows all resources associated with the current tag,
as well as all tags of those current resources (this models a typical
user interface in a tagging system where a resource is always dis-
played with tags associated with it). Search is considered success-
ful if the algorithm finds at least one of the target tags. To model
users behavior in exploratory navigation, the following strategies
are applied by the search agent:

1. If the agent arrives at a certain node for the second time, the
search stops and is counted as a failure (no backtracking) – this
mimics the situation where a user arrives at a tag that he already
visited, and then decides to, e.g., switch to the search field or to
leave the system.

2. In the case of a distance tie (two or more tags are equally close
to a target node) the highest degree tag is selected as the next
hop – in tagging systems tags are typically sorted by degree and
this models a user selecting the first tag from the sorted list.



3. If the agent did not find a target node in at least n steps (a tunable
parameter), then the search stops and it is again counted as a
failure – this models users who loose the motivation to continue
exploring the system.

The success rate thereby provides an answer to the question of the
pragmatic suitability of a folksonomy to support navigation.

(vi) Evaluation. Finally, we compare the results of simulation with
the defined evaluation metrics (here: the global shortest path) and
the difference in the number of hops needed by the simulator is
calculated for each of the simulated pairs. In the final step, the
simulation results for different folksonomies are compared to each
other. In addition to these steps, a number of adaptations can easily
be accommodated by the framework. For example: in step (iv),
different evaluation metrics can be selected or in step (v), real world
data can be used instead of simulations. We will briefly discuss
these adaptations next:

Alternative evaluation metrics. While the global shortest path is
a useful metric to evaluate how a folksonomy supports exploratory
navigation, an alternative metric might be adopted to evaluate the
usefulness of a folksonomy for an alternative task. For example,
for the task of finding relevant resources, one could use the number
or diversity of resources found instead of the global shortest path
metric. This also means that our evaluation would yield different
results for different tasks and corresponding metrics. We consider
this to be a desirable property of a pragmatic evaluation framework.

Simulation vs. Real-World Data. While decentralized search
with local knowledge represents an intuitive model of user naviga-
tion in networks, the evaluation framework does not depend on the
simulation to accurately reflect users’ actual navigation behavior in
social tagging systems: Instead of simulating exploratory naviga-
tion, the evaluation framework could equally use actual navigation
data (e.g. click trails through a system) from real users. In this
case, our approach would evaluate which folksonomy best explains
given user behavior, and thereby reveal which folksonomy or set of
folksonomies is most likely to be suitable for a given user popula-
tion. This would also mean that evaluation would yield different
results for different observed or assumed user behavior. Again, this
can be considered a desirable property of a pragmatic evaluation
framework.

4. VALIDATION
While the framework supports evaluation based on both simula-

tions and actual user data, in this paper we use simulation for better
experimental control, better illustration of our framework and due
to the difficulty of obtaining actual navigation data for all of our
datasets. For validation, we apply the framework to evaluate the
pragmatic utility of four different folksonomy induction algorithms
on five different social tagging data.

4.1 Datasets
The following datasets were used as an empirical basis:
Dataset BibSonomy: This dataset2 contains nearly all 916,495

annotations and 235,340 resources (scientific articles) from a dump
of BibSonomy [15] until 2009-01-01. The tag-tag network com-
prises 56,424 tags and 2,003,986 links.

Dataset CiteULike: This dataset3 contains 6,328,021 annota-
tions and 1,697,365 resources (scientific articles). The tag-tag net-
work comprises 347,835 tags and 27,536,381 links.

2http://www.kde.cs.uni-kassel.de/ws/dc09/
3http://www.citeulike.org/faq/data.adp

Dataset Delicious: This dataset is an excerpt from the PINTS
experimental dataset4. We extracted all data (resources are URLs)
from 11/2006. The tag-tag network consists of 380,979 tags and
39,808,439 links.

Dataset Flickr: This dataset is also an excerpt from the PINTS
dataset. It contains the data (resources are photos) from 12/2005.
The tag-tag network consists of 395,329 tags and 17,524,927 links.

Dataset LastFm: This dataset is from [30]. It contains annota-
tions from the first half of 2009. The resources in this dataset are
songs, artists and albums. The tag-tag network consists of 281,818
tags and 84,787,780 links.

4.2 Folksonomy Algorithms
On these five datasets, we apply and evaluate four state-of-the-art

folksonomy induction algorithms. The common objective of these
algorithms is to produce hierarchical structures (“folksonomies”)
from unstructured tagging data. While further algorithms exist
(such as [22]), we have selected the following four algorithms be-
cause (i) they were well documented and (ii) for their ease of im-
plementation. The evaluation framework can be used to evaluate
any kind of folksonomy induction algorithm that produces hierar-
chical structures as an output. The initial set of four algorithms acts
as a demonstration of the evaluation framework’s capabilities only.
In the following, we briefly describe each algorithm and how it has
been applied by us in this paper.

Affinity Propagation (AP) Frey and Dueck introduced Affinity
Propagation as a new clustering method in [11]. As input, Affin-
ity Propagation accepts a set of similarities between data samples
provided in a matrix. The diagonal entries (self-similarities) of the
similarity matrix are called preferences and are set according to the
suitability of the corresponding data sample to serve as a cluster
center (exemplar called in [11]). Although no explicit cluster num-
ber must be set, the preference values correlate with the number of
resulting clusters (lower preference values results in fewer clusters
and vice versa). AP runs by exchanging messages between data
samples to update their “responsibility” and “availability” values.
Responsibility values reflect how well data samples serve as exem-
plars for other data, and the availability values show the suitability
of other data samples to be the exemplars for specific data sam-
ples. Responsibility and availability are refined iteratively with a
parameter λ as an update factor.

In previous work [27], we have introduced an adaption of affinity
propagation to infer a taxonomy. We incorporated structural con-
straints directly into the global objective function of affinity prop-
agation, so that a tree evolves naturally from execution. In this
paper, we follow a simpler approach by applying the original AP
recursively in a bottom-up manner. In a first step, the top 10 Co-
sine similarities (pruned for memory reasons) between the tags in a
given data set serve as the input matrix, and the minimum of those
serves as preference for all data samples. Then, AP produces clus-
ters by selecting examples with associated data samples. If the ratio
between number of clusters and data samples is between 3 and 15
(adjustable parameter), then the result will be retained, otherwise
another run with lower (too many clusters have been selected) or
higher preference values (too few clusters have been selected) will
be executed. Then, the centroids of the clusters are calculated by
using the sum of the connected data samples normalized to unit
length. Now the Cosine similarities between the centroids serve as
input matrix for the next run of affinity propagation. This approach
is executed until the top-level is reached. Since we want a tag hi-

4https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research
/DataSets/PINTSExperimentsDataSets/



erarchy where each node represents a unique tag, a sample in each
cluster is used as describing tag. The tag representing a node is
selected by taking the nearest tag to the centroid. Furthermore, this
tag is removed from the actual tags contained in the leaf cluster and
is not used as representative in lower hierarchy levels. As param-
eter settings, we set λ0 to 0.6 with increasing values depending on
the iteration count (i) (λi = λi−1 + (1.0− λ0) ∗ i/imax). AP will
terminate after either a maximum of 5000 iterations (imax) or if the
exemplars of clusters are stable for at least 10 iterations.

Hierarchical K-Means Dhillon et al [9] introduced an adaption to
the k-means algorithm for textual data by optimizing the Cosine
similarity instead of Euclidean distance [9], while [35] introduced
an efficient version of an online spherical k-means. Without go-
ing into detail, these adaptations allow an online version to be at
least as fast as a batch spherical k-means with better results. We
utilize k-means iteratively in a top-down manner to build a tag hi-
erarchy. Basically, in the first step, the whole input data set is used
for clustering the data into 10 clusters. Clusters containing more
than 10 connected samples are further partitioned while ones with
less than 10 samples are considered as leaf clusters. However, since
a cluster set of 11 samples would also be partitioned into 10 clusters
we introduced a special case to give some freedom to the cluster-
ing process for these border cases by setting the cluster number to
the maximum of 10 or number of data samples divided by 3 what
would result in 3 clusters in case of 11 samples. The tag repre-
senting a node is selected by taking the nearest tag to the centroid.
Furthermore, this tag is removed from the actual tags contained in
a cluster and which are further clustered in the next step, if there
are more than 10 samples left.

Generality in Tag Similarity Graph (Closeness Centrality / Co-
sine Similarity) In [13], the authors describe an algorithm devel-
oped to overcome the limited success in producing hierarchical
structures from the tagging data by means of hierarchical cluster-
ing. The input for the algorithm is the so-called tag similarity graph
– an unweighted graph where each tag is a node in the graph, and
two nodes are linked to each other if their similarity is above a
predefined similarity threshold. In the simplest case, the thresh-
old is defined through tag overlap – tags need to share at least one
resource to be linked in the tag similarity graph. The second pre-
requisite for the algorithm is the ranking of nodes in a descending
order according to how central the tags are in the tag similarity
graph. In particular, this ranking produces a generality order where
the most general tags from a dataset are in the top positions. The
algorithm starts by a single node tree with the most general tag as
the root node. The algorithm then proceeds by iterating through
the generality list and adding each tag to the tree – the algorithm
calculates the similarities between the current tag and each tag cur-
rently present in the tree and adds the current tag as a child to its
most similar tag. The authors describe their algorithm as extensi-
ble as they leave the possibility to apply different similarity, as well
as different centrality measures. The presented algorithm works
with cosine similarity and closeness centrality, and we denote this
algorithm henceforth CloCen/Cos.

Generality in Tag Similarity Graph (Degree Centrality / Co-
Occurrence) In [3], the authors describe an extension of the algo-
rithm presented in [13]. Generally, this new algorithm is based on
principles similar to Heymann’s algorithm – but the new algorithm
applies tag co-occurrence as the similarity measure and the degree
centrality as the generality measure (DegCen/Cooc). In particular,
the algorithm executes an extensive preprocessing of the dataset
e.g. to remove synonym tags or to resolve ambiguous tags. For

reasons of simplicity, we skipped preprocessing of the dataset and
only applied the alternative similarity and centrality measures.

4.3 Folksonomy Evaluation
We evaluate the folksonomies produced by the four different al-

gorithms both on a theoretical and on a pragmatic level.

4.3.1 Theoretical suitability of folksonomies
For each pair of connected nodes in the tag-tag network, we mea-

sure the distance between the same pair of nodes in a given folk-
sonomy. Analyzing the resulting distribution of distances provides
insights into the theoretical suitability of a given folksonomy to
support decentralized search. Intuitively, a distance distribution
that is dominated by short range distances with occasional long
range links represents suitable background knowledge for decen-
tralized search. Specifically, we compare the distance distributions
of different folksonomies to the class of theoretically searchable
networks determined by a specific range of the α parameter in
the exponential distribution ce−αd by Watts. However, we can-
not directly compare these distributions without adapting the Watts’
model to the specifics of tagging networks. From [12] and related
work, we know that the tag degree distribution in a tagging system
is a power-law distribution, whereas in Watts’ model the degree
distribution is uniform. Another difference is that in a folksonomy,
tags are potentially attached everywhere in a hierarchy, whereas in
Watts’ model they would only be attached to leaves.

So in order to adapt Watts’ model to tagging networks, we dis-
cuss the distance distributions of two synthetic folksonomies that
represent a random and a “homophily” scenario. While the “ho-
mophily” distance distribution (the distance distribution of isolated
cliques) mimics a folksonomy that only supports short range links
in the tag-tag network, the random distance distribution mimics a
folksonomy that has random (short and long range) links. This is
illustrated in Figure 3 where (a) shows the two synthetic distance
distributions (Homoph. & random). Neither of these two synthetic
folksonomies are optimal: while the distance distribution of the ho-
moph. folksonomy is dominated by short range links, the random
folksonomy is dominated by long range links. To be useful as back-
ground knowledge for decentralized search, folksonomies need to
mostly short range links mixed with occasional long range links.

In a random network, any node is equally likely to be linked to
any other node, which results in the distance distribution to fall
within the range [bd, 2 ∗ bd]. As, according to Watts [34] and
Kleinberg [19] searchable networks exhibit α > 0 and since e.g.
e−α = b =⇒ α < 0, a random network is not efficiently
searchable. Therefore, any folksonomy yielding a distance distri-
bution close to this range renders the network less searchable. In
general, as tag-tag networks are power law networks sub-linear de-
centralized search strategies exist for such networks. For example,
Adamic designed a decentralized search algorithm that utilizes the
node degree to find a specific target node in the network [2]. The al-
gorithm adopts a simple greedy strategy by moving to an adjacent
node of the highest degree. Thus, the algorithm is able to move
quickly to a network hub that, with a high probability, has a link
to the target node. Although such an algorithm makes a random
power law network theoretically searchable [19], within the scope
of our framework we consider such a network to be less practical
due to a lack of semantic clues. In particular, as our framework
models exploratory navigation, utilizing high degree nodes would
involve users in exploring thousands of links emanating from a net-
work hub – a task that is practically not feasible.

On the other hand, in a homophilous network of isolated cliques,
a node is connected to nodes that are at distance d = 1. How-
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Figure 3: Comparison of distance distributions for four folksonomy induction algorithms on the BibSonomy dataset and two syn-
thetic folksonomies: Homoph. Net. (black curve) and Rand. (red curve). Useful distance distributions trade some short range
links against long range links to improve the searchability of the network. They are thereby much more similar to the distance
distributions of Homoph. folksonomies than to Rand. folksonomies.
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Figure 4: Comparison of distance distributions for four folksonomy induction algorithms on five different datasets. Across all
datasets, Aff.Prop. and K-Means exhibit distance distributions that are less efficient, i.e. more similar to a random network (domi-
nated by too many long range links). At the same time, DegCent/Cooc and CloCent/Cos distributions are dominated by short range
links combined with a few long range links, which renders them more useful for decentralized search.

ever, in a power-law network the high degree nodes typically have
degree � 2 ∗ b and are therefore also connected to nodes that
are at longer distances. To mimic the homophily case, such a high
degree node is then firstly connected to all available nodes at dis-
tance d = 1, then to nodes at distance d = 2, then to nodes at
distance d = 3, and so on until all of its links are assigned. The-
oretically, a suitable folksonomy possesses a distance distribution
which approximates the homophilous folksonomy, but trades some
short range links for long range links. In this sense, the distance
distribution of suitable folksonomies are closer to the homophilous
folksonomy than to the random one.

To assess the theoretical suitability of different folksonomies for
decentralized search we plot the distance distribution first. We then
compare the resulting distance distributions with the synthetic dis-
tance distributions discussed above. Figure 3 shows a compari-
son of the “homophily” distance distribution with branching factor
b = 3 and distance distributions calculated for the folksonomies
learned from the Bibsonomy dataset. The grey areas represent the
difference in the number of short-range links between the clique
and a particular distribution whereas the yellow areas represent the
difference in the number of long-range links. As we can expect
fewer short-range links in the case of searchable folksonomies, we
call this area Absent Short-Range Links area. By analogy, we call
the area where additional long range links are introduced the Ad-
ditional Long-Range Links area. Theoretically, both of these areas
need to be greater than 0 but still rather small, i.e., if they are too
large the distance distribution is composed of too many long-range
links and becomes similar to the random distance distribution (the
red curve in Figure 3), which is suboptimal. From Figures 3c and
3e we can observe that DegCen/Cooc and CloCen/Cos distributions
exhibit the desired properties (many short range links mixed with
a few long range links) on the Bibsonomy dataset, which renders
them more suitable than K-Means or Aff. Prop. (Figures 3b and
3d). Figure 4 presents the results for all five datasets.

Summary: Existing folksonomy algorithms produce folksonomies
that are theoretically useful to support decentralized search. Not all
folksonomies are equally useful. Folksonomies produced by tag
similarity graph algorithms (DegCen/Cooc and CloCen/Cos) are
theoretically more useful than folksonomies produced by hierar-
chical clustering algorithms (K-Means and Aff. Prop.)

4.3.2 Pragmatic suitability of folksonomies
Watts has identified a broad parameter space that is occupied by

searchable networks [34]. In other words, analyzing the theoretical
suitability of folksonomies for decentralized search only provides
a general answer to the question whether a folksonomy falls into
this broad region or not. Although the theoretical analysis provides
some insights, a pragmatic evaluation of folksonomies can not be
answered theoretically. The answer depends on additional factors
such as the task or properties of the tagging network including e.g.
degree distribution, the size of the giant component or the shortest
path distribution. Therefore, pragmatic analysis is needed.

In the following, we will evaluate the usefulness of folksonomies
to support exploratory navigation in tagging systems by simula-
tion. We model exploratory navigation as a process where an agent
navigates from a starting resource node to a set of resources that
are weakly-connected through some common topics. We study the
success rate, i.e. the number of times an agent is successful in
finding a path between those nodes, using different folksonomies
as background knowledge. Figure 5 presents the success rate of
exploratory navigation as the function of a tunable parameter n,
the maximal number of steps an agent is allowed to perform be-
fore stopping (e.g., an agent only follows n links). All four folk-
sonomies have much better success rates than the random folkson-
omy (Note that an agent can only be successful if the shortest path
between the source and the target node is shorter than n).

While the success rate provides interesting information, we don’t
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Figure 5: Success rate as the function of the maximal number of steps (hops) n. The success rate of exploratory navigation with
a random baseline folksonomy as hierarchical background knowledge is high (60% and higher). Across all datasets and different
folksonomies, 70% of the resources can be reached from an arbitrary starting node with 3 hops. With the same number of hops,
DegCen/Cooc and CloCen/Cos have success rates of > 90% or higher on all datasets. They significantly outperform K-Means and
Aff.Prop. consistently, sometimes by large margins (d).

know how efficient the agent is, i.e. how often an agent does not
find the global shortest path, but some other path that is longer. For
that purpose, Figure 6 plots the difference between shortest paths
in the system (using global knowledge) and the paths that agents
have found (using local knowledge only). The light-blue bars in the
histograms are those search pairs where the agent finds the shortest
possible path, the green bars are those search pairs where the agent
can only find a path that is one hop longer. The dark blue bars refer
to paths where it takes the agent two extra hops, and the violet bars
refer those cases with three or more extra hops.

As a baseline, we perform exploratory navigation with a ran-
domly generated folksonomy (with branching factor b = 3) to
obtain a lower bound, depicted in Figures 6a, 6f, 6k, 6p, and 6u.
The main cause why an agent using a random folksonomy as back-
ground knowledge is considerably successful is the fact that tag-
ging networks are highly connected and have a low effective diam-
eter (< 3.5) [12]. Due to high link density, the majority of tags
are connected by multiple short paths. That means that even if the
agent takes a single non-optimal or wrong link towards the destina-
tion tag, with high probability there exists an alternative link which
also leads to the destination tag. In particular for the (global) short-
est path of 2, an agent using a random folksonomy is considerably
successful in finding short path – regardless of the first tag selected,
that tag is in the majority of cases linked to the destination tag.
However, as the path towards the destination becomes longer (≥ 3)
the ability of an agent using a random folksonomy as background
knowledge deteriorates. The random folksonomy applied on the
LastFM dataset exhibits the most extreme behavior in this respect
– since tags in this dataset are music genres their overlap is ex-
tremely high. However, across all datasets we see that agents using
folksonomies produced by the introduced algorithms find signifi-
cantly shorter paths than when using a random folksonomy.

Summary: Existing algorithms produce folksonomies that are more
useful for exploratory navigation than a random baseline folkson-
omy. Folksonomies obtained by tag similarity graph methods per-
form better in supporting exploratory navigation than folksonomies
obtained by hierarchical clustering methods. This pragmatic result
supports the theoretical results presented in the previous section.

4.3.3 Discussion
Structurally, K-Means hierarchies are typically unbalanced. We

performed additional experiments and introduced a balancing fac-
tor to resolve these structural issues and obtain more balanced clus-
ters. Preliminary results show that this approach improves the suc-
cess rate of decentralized search only marginally (e.g. the success

rate improves by 1% with BibSonomy dataset), and thereby does
not seem to have a significant impact on the validity of our results.

A problem with both Aff. Prop. and K-Means seems to be the
choice of the cluster representative. In the current implementation,
the cluster representative is chosen by taking the nearest sample to
the centroid. As the similarities in tagging datasets are often small
and sparse, the similarities between cluster members are equal, and
thus the selection of the cluster representative, and thereby a parent
node for that cluster in the resulting hierarchy, is completely arbi-
trary – this could be the main cause why Aff.Prop. and K-Means
are inferior to tag graph similarity algorithms. The same issues
seem to influence the construction of the Aff.Prop. hierarchy that
is based on the similarity between the centroids of the previous
execution steps. One possible remedy for this could be to use an
average similarity of connected data samples. An advantage of Aff.
Prop. over K-Means is that on the upper hierarchical levels the al-
gorithm produces broader structures than K-Means. This seems to
make them slightly more suitable for exploratory navigation.

Summarizing, hierarchical clustering methods seem to lack ad-
ditional information about the dataset as given by the tag similar-
ity graph and centrality ranking. Note that while Heymann et al.
in [13] came to a similar conclusion based on intuition, our paper
provides both a theoretical and an empirical justification for this.

There are no significant differences in performance of DegCen/
Cooc and CloCen/Cos combinations. We performed additional ex-
periments and produced folksonomies by combining betweenness
centrality and co-occurrence as well as closeness centrality and co-
occurrence. The choice of centrality or similarity measure does not
significantly influence performance. Any combination of these two
measures performs similar. However, calculating closeness or be-
tweenness centrality involves solving of the all-pairs shortest path
problem which is a time costly operation. Even fast approximative
algorithms for large networks [4] or incremental approximative al-
gorithms (e.g. when a user adds a new tag) are, for an order of
magnitude, slower than degree centrality algorithms. Because of
term weights recalculation an incremental computation of the co-
sine similarity matrix requires more time than an incremental com-
putation of the co-occurrence similarity matrix. Thus, for fast folk-
sonomy computation we suggest DegCen/Cooc combination.

5. CONCLUSIONS
We have presented a pragmatic evaluation framework for folk-

sonomies that connects two previously unconnected fields of re-
search, i.e. research on folksonomy algorithms with decentralized
search in networks. Our evaluation framework is completely gen-
eral with regard to the task, data and evaluation metrics adopted.
We have demonstrated the viability of this framework by instanti-
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(a) BibSonomy Random
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(b) BibSonomy Aff.Prop.
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(c) BibSonomy K-Means
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(d) Bib. DegCen/Cooc
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(e) Bib. CloCen/Cos
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(f) CiteULike Random
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(g) CiteULike Aff.Prop.
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(h) CiteULike K-Means
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(i) Cite. DegCen/Cooc
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(j) Cite. CloCen/Cos
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(k) Delicious Random
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(l) Delicious Aff.Prop.
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(m) Delicious K-Means
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(n) Del. DegCen/Cooc
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(o) Del. CloCen/Cos
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(p) Flickr Random
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(q) Flickr Aff.Prop.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5

N
um

be
r 

of
 p

ai
rs

 (
P

er
ce

nt
ag

e)

Shortest path

Searcher-Short.Path
0
1
2

3+
∞

(r) Flickr K-Means
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(s) Flickr DegCen/Cooc
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(t) Flickr CloCen/Cos
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(u) LastFm Random
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(v) LastFm Aff.Prop.
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(w) LastFm K-Means
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(x) LastFm DegCen/Cooc
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Figure 6: Comparison of global shortest paths and the delivery time (number of hops with local knowledge) with different folk-
sonomies. Agents using the random baseline folksonomy (left column) find short paths, but using anyone of the introduced folk-
sonomy algorithms instead (column 2-5) improves delivery time significantly. Again, DegCen/Cooc and CloCen/Cos consistently
outperform Aff.Prop. and K-Means across all datasets (“larger light-blue bars”).

ating it to evaluate an exploratory navigation task for four different
folksonomy algorithms on five social tagging datasets. In our ex-
periments, we find that folksonomies represent suitable background
knowledge for exploratory navigation. Our results show that Deg-
Cen/Cooc and CloCen/Cos folksonomy algorithms outperform tra-
ditional hierarchical clustering techniques on this task.

The results of this paper suggest that in addition to semantic eval-
uation, future folksonomy research needs to consider pragmatic
evaluations as well, in order to examine the usefulness of folk-
sonomies for different tasks. While we have evaluated folksonomies
in this paper, our framework can be applied to evaluate manually
constructed and/or expert taxonomies as well. Although our re-
sults make a theoretical and a pragmatic case for folksonomies to
be used in user interfaces of tagging systems, the extent to which
folksonomies will be successfully used for this purpose depends
on other factors as well, such as cognitive, psychological or user
interface constraints.
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